考虑广义分数积分算子的指数(s, m)-预逆函数的一些新推广

F. Safdar, M. Attique
{"title":"考虑广义分数积分算子的指数(s, m)-预逆函数的一些新推广","authors":"F. Safdar, M. Attique","doi":"10.52280/pujm.2021.531203","DOIUrl":null,"url":null,"abstract":"The generalized fractional integral has been one of the most useful operators for modelling non-local behaviors by fractional differential equations. It is considered, for several integral inequalities by introducing the concept of exponentially (s, m)-preinvexity. These variants\nderived via an extended Mittag-Leffler function based on boundedness, continuity and Hermite-Hadamard type inequalities. The consequences associated with fractional integral operators are more general and also present the results for convexity theory. Moreover, we point out that the variants are useful in solving the problems of science, engineering and\ntechnology where the Mittag-Leffler function occurs naturally.","PeriodicalId":205373,"journal":{"name":"Punjab University Journal of Mathematics","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Some new generalizations for exponentially (s, m)-preinvex functions considering\\ngeneralized fractional integral operators\",\"authors\":\"F. Safdar, M. Attique\",\"doi\":\"10.52280/pujm.2021.531203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The generalized fractional integral has been one of the most useful operators for modelling non-local behaviors by fractional differential equations. It is considered, for several integral inequalities by introducing the concept of exponentially (s, m)-preinvexity. These variants\\nderived via an extended Mittag-Leffler function based on boundedness, continuity and Hermite-Hadamard type inequalities. The consequences associated with fractional integral operators are more general and also present the results for convexity theory. Moreover, we point out that the variants are useful in solving the problems of science, engineering and\\ntechnology where the Mittag-Leffler function occurs naturally.\",\"PeriodicalId\":205373,\"journal\":{\"name\":\"Punjab University Journal of Mathematics\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Punjab University Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52280/pujm.2021.531203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Punjab University Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52280/pujm.2021.531203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

广义分数阶积分是用分数阶微分方程模拟非局部行为最有用的算子之一。通过引入指数(s, m)-前invinity的概念,研究了若干积分不等式。这些变量是通过基于有界性、连续性和Hermite-Hadamard型不等式的扩展mittagg - leffler函数导出的。与分数阶积分算子相关的结果更一般,也提供了凸性理论的结果。此外,我们还指出,这些变体在解决Mittag-Leffler函数自然出现的科学、工程和技术问题方面是有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some new generalizations for exponentially (s, m)-preinvex functions considering generalized fractional integral operators
The generalized fractional integral has been one of the most useful operators for modelling non-local behaviors by fractional differential equations. It is considered, for several integral inequalities by introducing the concept of exponentially (s, m)-preinvexity. These variants derived via an extended Mittag-Leffler function based on boundedness, continuity and Hermite-Hadamard type inequalities. The consequences associated with fractional integral operators are more general and also present the results for convexity theory. Moreover, we point out that the variants are useful in solving the problems of science, engineering and technology where the Mittag-Leffler function occurs naturally.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信