Changwan Hong, Aravind Sukumaran-Rajam, Jinsung Kim, P. Rawat, S. Krishnamoorthy, L. Pouchet, F. Rastello, P. Sadayappan
{"title":"使用抽象内核仿真的gpu性能建模","authors":"Changwan Hong, Aravind Sukumaran-Rajam, Jinsung Kim, P. Rawat, S. Krishnamoorthy, L. Pouchet, F. Rastello, P. Sadayappan","doi":"10.1145/3178487.3178524","DOIUrl":null,"url":null,"abstract":"Performance modeling of GPU kernels is a significant challenge. In this paper, we develop a novel approach to performance modeling for GPUs through abstract kernel emulation along with latency/gap modeling of resources. Experimental results on all benchmarks from the Rodinia suite demonstrate good accuracy in predicting execution time on multiple GPU platforms.","PeriodicalId":193776,"journal":{"name":"Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Performance modeling for GPUs using abstract kernel emulation\",\"authors\":\"Changwan Hong, Aravind Sukumaran-Rajam, Jinsung Kim, P. Rawat, S. Krishnamoorthy, L. Pouchet, F. Rastello, P. Sadayappan\",\"doi\":\"10.1145/3178487.3178524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Performance modeling of GPU kernels is a significant challenge. In this paper, we develop a novel approach to performance modeling for GPUs through abstract kernel emulation along with latency/gap modeling of resources. Experimental results on all benchmarks from the Rodinia suite demonstrate good accuracy in predicting execution time on multiple GPU platforms.\",\"PeriodicalId\":193776,\"journal\":{\"name\":\"Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3178487.3178524\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3178487.3178524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Performance modeling for GPUs using abstract kernel emulation
Performance modeling of GPU kernels is a significant challenge. In this paper, we develop a novel approach to performance modeling for GPUs through abstract kernel emulation along with latency/gap modeling of resources. Experimental results on all benchmarks from the Rodinia suite demonstrate good accuracy in predicting execution time on multiple GPU platforms.