NK适应度景观模拟退火与遗传算法的实证比较

Lae-Jeong Park, D. Nam, C. Park, Sang-Hoon Oh
{"title":"NK适应度景观模拟退火与遗传算法的实证比较","authors":"Lae-Jeong Park, D. Nam, C. Park, Sang-Hoon Oh","doi":"10.1109/ICEC.1997.592286","DOIUrl":null,"url":null,"abstract":"The paper presents the features of GAs as static optimization techniques through an empirical comparison with SA on the NK fitness landscape model. This is done with consideration of the problem size and the ruggedness. Experimental results show that the genetic search is not comparable to simulated annealing on the NK fitness landscapes. Furthermore, the performance gap gets larger as the problem size increases and the landscape becomes rugged.","PeriodicalId":167852,"journal":{"name":"Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"An empirical comparison of simulated annealing and genetic algorithms on NK fitness landscapes\",\"authors\":\"Lae-Jeong Park, D. Nam, C. Park, Sang-Hoon Oh\",\"doi\":\"10.1109/ICEC.1997.592286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents the features of GAs as static optimization techniques through an empirical comparison with SA on the NK fitness landscape model. This is done with consideration of the problem size and the ruggedness. Experimental results show that the genetic search is not comparable to simulated annealing on the NK fitness landscapes. Furthermore, the performance gap gets larger as the problem size increases and the landscape becomes rugged.\",\"PeriodicalId\":167852,\"journal\":{\"name\":\"Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEC.1997.592286\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEC.1997.592286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文通过与SA在NK适应度景观模型上的实证比较,揭示了GAs作为静态优化技术的特点。这是在考虑问题大小和坚固性的情况下完成的。实验结果表明,遗传搜索在NK适应度景观上不如模拟退火。此外,随着问题规模的增加和环境的恶化,性能差距会越来越大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An empirical comparison of simulated annealing and genetic algorithms on NK fitness landscapes
The paper presents the features of GAs as static optimization techniques through an empirical comparison with SA on the NK fitness landscape model. This is done with consideration of the problem size and the ruggedness. Experimental results show that the genetic search is not comparable to simulated annealing on the NK fitness landscapes. Furthermore, the performance gap gets larger as the problem size increases and the landscape becomes rugged.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信