基于自适应滤波算法的盲信道均衡

Said Elkassimi, S. Safi, B. Manaut
{"title":"基于自适应滤波算法的盲信道均衡","authors":"Said Elkassimi, S. Safi, B. Manaut","doi":"10.13189/UJAM.2017.050301","DOIUrl":null,"url":null,"abstract":"This paper proposes an algorithm based on ZF and MMSE methods for blind channel equalization, which is compared with adaptive filter algorithms which are Constant Modulus Algorithm (CMA), Fractional Space CMA (FSCMA) and Sign Kurtosis Maximization Adaptive Algorithm (SKMAA). The simulations show that the proposed algorithm gives satisfied result versus CMA, FSCMA and SKMAA algorithms. The study is done under certain conditions, it is implemented in noisy environment, for different number of symbols and different SNR values with QPSK modulation. Equalization of channel is more performing if we use the proposed algorithms.","PeriodicalId":372283,"journal":{"name":"Universal Journal of Applied Mathematics","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Blind Channel Equalization by Adaptive Filter Algorithms\",\"authors\":\"Said Elkassimi, S. Safi, B. Manaut\",\"doi\":\"10.13189/UJAM.2017.050301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an algorithm based on ZF and MMSE methods for blind channel equalization, which is compared with adaptive filter algorithms which are Constant Modulus Algorithm (CMA), Fractional Space CMA (FSCMA) and Sign Kurtosis Maximization Adaptive Algorithm (SKMAA). The simulations show that the proposed algorithm gives satisfied result versus CMA, FSCMA and SKMAA algorithms. The study is done under certain conditions, it is implemented in noisy environment, for different number of symbols and different SNR values with QPSK modulation. Equalization of channel is more performing if we use the proposed algorithms.\",\"PeriodicalId\":372283,\"journal\":{\"name\":\"Universal Journal of Applied Mathematics\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Universal Journal of Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13189/UJAM.2017.050301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Universal Journal of Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13189/UJAM.2017.050301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于ZF和MMSE方法的盲信道均衡算法,并与恒模算法(CMA)、分数空间CMA (FSCMA)和符号峰度最大化自适应算法(SKMAA)等自适应滤波算法进行了比较。仿真结果表明,该算法与CMA、FSCMA和SKMAA算法相比具有较好的效果。研究在一定的条件下,在噪声环境下,对不同的符号数和不同的信噪比值进行QPSK调制。如果我们使用所提出的算法,信道均衡的性能会更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Blind Channel Equalization by Adaptive Filter Algorithms
This paper proposes an algorithm based on ZF and MMSE methods for blind channel equalization, which is compared with adaptive filter algorithms which are Constant Modulus Algorithm (CMA), Fractional Space CMA (FSCMA) and Sign Kurtosis Maximization Adaptive Algorithm (SKMAA). The simulations show that the proposed algorithm gives satisfied result versus CMA, FSCMA and SKMAA algorithms. The study is done under certain conditions, it is implemented in noisy environment, for different number of symbols and different SNR values with QPSK modulation. Equalization of channel is more performing if we use the proposed algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信