神经分类器特征闭环优化

N. van der Merwe, A. Hoffman
{"title":"神经分类器特征闭环优化","authors":"N. van der Merwe, A. Hoffman","doi":"10.1109/COMSIG.1998.736926","DOIUrl":null,"url":null,"abstract":"The selection and preprocessing of features are crucial to the success of a classifier for pattern recognition applications. The preprocessing often involves filters, transformations and non-linear processing of the raw data. Since the training data required is an exponential function of the number of features, a reduction or transformation of the features is essential. While it is frequently possible to heuristically select reasonable values pertaining to the selection of these parameters, an automated approach could be of great value in different application areas. Various factors relating to the optimization process are described and the results of continuous wavelet based optimization on seismic buffer recognition are described.","PeriodicalId":294473,"journal":{"name":"Proceedings of the 1998 South African Symposium on Communications and Signal Processing-COMSIG '98 (Cat. No. 98EX214)","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Closed loop optimization of features for neural classifiers\",\"authors\":\"N. van der Merwe, A. Hoffman\",\"doi\":\"10.1109/COMSIG.1998.736926\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The selection and preprocessing of features are crucial to the success of a classifier for pattern recognition applications. The preprocessing often involves filters, transformations and non-linear processing of the raw data. Since the training data required is an exponential function of the number of features, a reduction or transformation of the features is essential. While it is frequently possible to heuristically select reasonable values pertaining to the selection of these parameters, an automated approach could be of great value in different application areas. Various factors relating to the optimization process are described and the results of continuous wavelet based optimization on seismic buffer recognition are described.\",\"PeriodicalId\":294473,\"journal\":{\"name\":\"Proceedings of the 1998 South African Symposium on Communications and Signal Processing-COMSIG '98 (Cat. No. 98EX214)\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1998 South African Symposium on Communications and Signal Processing-COMSIG '98 (Cat. No. 98EX214)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMSIG.1998.736926\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1998 South African Symposium on Communications and Signal Processing-COMSIG '98 (Cat. No. 98EX214)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMSIG.1998.736926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

特征的选择和预处理是模式识别分类器成功的关键。预处理通常涉及原始数据的滤波、转换和非线性处理。由于所需的训练数据是特征数量的指数函数,因此特征的简化或转换是必不可少的。虽然通常可以启发式地选择与这些参数的选择相关的合理值,但自动化方法在不同的应用领域可能具有很大的价值。描述了与优化过程有关的各种因素,并描述了基于连续小波优化的地震缓冲区识别结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Closed loop optimization of features for neural classifiers
The selection and preprocessing of features are crucial to the success of a classifier for pattern recognition applications. The preprocessing often involves filters, transformations and non-linear processing of the raw data. Since the training data required is an exponential function of the number of features, a reduction or transformation of the features is essential. While it is frequently possible to heuristically select reasonable values pertaining to the selection of these parameters, an automated approach could be of great value in different application areas. Various factors relating to the optimization process are described and the results of continuous wavelet based optimization on seismic buffer recognition are described.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信