一种基于大小和位置不变事件的人体姿势识别算法

Shoushun Chen, F. Folowosele, Dongsoo Kim, R. J. Vogelstein, R. Etienne-Cummings, E. Culurciello
{"title":"一种基于大小和位置不变事件的人体姿势识别算法","authors":"Shoushun Chen, F. Folowosele, Dongsoo Kim, R. J. Vogelstein, R. Etienne-Cummings, E. Culurciello","doi":"10.1109/BIOCAS.2008.4696930","DOIUrl":null,"url":null,"abstract":"In this paper we report a size and position invariant human posture recognition algorithm. The algorithm employs a simplified line segment Hausdorff distance classification and uses projection histograms to achieve size and position invariance. Compared to other existing method utilizing line segment Hausdorff distance, the proposed algorithm reduces the computation complexity by 36000 times, for our test images. Combining bio-inspired event-based image acquisition and hardware friendly feature extraction and classification algorithm will lead to a promising technology for use in wireless sensor network.","PeriodicalId":415200,"journal":{"name":"2008 IEEE Biomedical Circuits and Systems Conference","volume":"213 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A size and position invariant event-based human posture recognition algorithm\",\"authors\":\"Shoushun Chen, F. Folowosele, Dongsoo Kim, R. J. Vogelstein, R. Etienne-Cummings, E. Culurciello\",\"doi\":\"10.1109/BIOCAS.2008.4696930\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we report a size and position invariant human posture recognition algorithm. The algorithm employs a simplified line segment Hausdorff distance classification and uses projection histograms to achieve size and position invariance. Compared to other existing method utilizing line segment Hausdorff distance, the proposed algorithm reduces the computation complexity by 36000 times, for our test images. Combining bio-inspired event-based image acquisition and hardware friendly feature extraction and classification algorithm will lead to a promising technology for use in wireless sensor network.\",\"PeriodicalId\":415200,\"journal\":{\"name\":\"2008 IEEE Biomedical Circuits and Systems Conference\",\"volume\":\"213 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE Biomedical Circuits and Systems Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIOCAS.2008.4696930\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Biomedical Circuits and Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2008.4696930","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种尺寸和位置不变的人体姿态识别算法。该算法采用简化的线段Hausdorff距离分类,利用投影直方图实现尺寸和位置不变性。与现有的利用线段豪斯多夫距离的方法相比,对于我们的测试图像,本文算法的计算复杂度降低了36000倍。结合生物启发的基于事件的图像采集和硬件友好的特征提取和分类算法将导致一种有前途的技术,用于无线传感器网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A size and position invariant event-based human posture recognition algorithm
In this paper we report a size and position invariant human posture recognition algorithm. The algorithm employs a simplified line segment Hausdorff distance classification and uses projection histograms to achieve size and position invariance. Compared to other existing method utilizing line segment Hausdorff distance, the proposed algorithm reduces the computation complexity by 36000 times, for our test images. Combining bio-inspired event-based image acquisition and hardware friendly feature extraction and classification algorithm will lead to a promising technology for use in wireless sensor network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信