逼真的伪随机面部形状的实用参数合成

Igor Borovikov, K. Levonyan, Mihai Anghelescu
{"title":"逼真的伪随机面部形状的实用参数合成","authors":"Igor Borovikov, K. Levonyan, Mihai Anghelescu","doi":"10.1109/FG57933.2023.10042771","DOIUrl":null,"url":null,"abstract":"There is a growing demand for populating virtual worlds with large numbers of realistic-looking characters. Besides hand-crafted characters like the main protagonists in video games, the virtual worlds may also need massive numbers of secondary characters. Manual authoring of their features is not usually practical. For parametric models of human faces, a naive approach randomizes all the parameters of the human face to generate a random one. However, the uniform or hand-crafted distribution of the shape authoring parameters is unlikely to represent value ranges and correlations present naturally in human faces. The paper proposes a simple automated method for generating realistic-looking head shapes via learned mapping between latent space like the FaceNet embedding and the explicit parametric space used by the character modeling tools. Our approach is simple, robust, and can efficiently generate a large variety of head shapes with a predictable dissimilarity.","PeriodicalId":318766,"journal":{"name":"2023 IEEE 17th International Conference on Automatic Face and Gesture Recognition (FG)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Practical Parametric Synthesis of Realistic Pseudo-Random Face Shapes\",\"authors\":\"Igor Borovikov, K. Levonyan, Mihai Anghelescu\",\"doi\":\"10.1109/FG57933.2023.10042771\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is a growing demand for populating virtual worlds with large numbers of realistic-looking characters. Besides hand-crafted characters like the main protagonists in video games, the virtual worlds may also need massive numbers of secondary characters. Manual authoring of their features is not usually practical. For parametric models of human faces, a naive approach randomizes all the parameters of the human face to generate a random one. However, the uniform or hand-crafted distribution of the shape authoring parameters is unlikely to represent value ranges and correlations present naturally in human faces. The paper proposes a simple automated method for generating realistic-looking head shapes via learned mapping between latent space like the FaceNet embedding and the explicit parametric space used by the character modeling tools. Our approach is simple, robust, and can efficiently generate a large variety of head shapes with a predictable dissimilarity.\",\"PeriodicalId\":318766,\"journal\":{\"name\":\"2023 IEEE 17th International Conference on Automatic Face and Gesture Recognition (FG)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 17th International Conference on Automatic Face and Gesture Recognition (FG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FG57933.2023.10042771\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 17th International Conference on Automatic Face and Gesture Recognition (FG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FG57933.2023.10042771","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

越来越多的人希望在虚拟世界中加入大量逼真的角色。除了像电子游戏中的主角这样的手工角色,虚拟世界可能还需要大量的次要角色。手动编写它们的特性通常是不实际的。对于人脸的参数化模型,一种朴素的方法是将人脸的所有参数随机化,生成一个随机的人脸模型。然而,形状创作参数的均匀或手工分布不太可能表示人脸中自然存在的值范围和相关性。本文提出了一种简单的自动化方法,通过在潜在空间(如FaceNet嵌入)和角色建模工具使用的显式参数空间之间的学习映射来生成逼真的头部形状。我们的方法简单,健壮,并且可以有效地生成具有可预测差异性的各种头部形状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Practical Parametric Synthesis of Realistic Pseudo-Random Face Shapes
There is a growing demand for populating virtual worlds with large numbers of realistic-looking characters. Besides hand-crafted characters like the main protagonists in video games, the virtual worlds may also need massive numbers of secondary characters. Manual authoring of their features is not usually practical. For parametric models of human faces, a naive approach randomizes all the parameters of the human face to generate a random one. However, the uniform or hand-crafted distribution of the shape authoring parameters is unlikely to represent value ranges and correlations present naturally in human faces. The paper proposes a simple automated method for generating realistic-looking head shapes via learned mapping between latent space like the FaceNet embedding and the explicit parametric space used by the character modeling tools. Our approach is simple, robust, and can efficiently generate a large variety of head shapes with a predictable dissimilarity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信