日全球太阳辐射时间序列预测的SARIMA-SVM混合模型

S. Boualit, A. Mellit
{"title":"日全球太阳辐射时间序列预测的SARIMA-SVM混合模型","authors":"S. Boualit, A. Mellit","doi":"10.1109/IRSEC.2016.7983867","DOIUrl":null,"url":null,"abstract":"The measured solar radiation at the ground level is behaving like a very random variable, because of various disturbances encountered throughout its trajectory through the atmosphere in particular; winds, cloudiness, humidity and temperature variations… etc. As the accumulated daily global solar energy is an indispensable parameter for designing of solar systems (photovoltaic and thermal) and its prior knowledge (prediction) is required to control and manage all these solar systems, so we thought improve the predictive model of daily global solar radiation (DGSR) time series. A hybrid model based on the methodology of Box & Jenkins (SARIMA; Seasonal Auto-Regressive Integrated Moving Average) and SVM (Support Vector Machine) is elaborated to predict the clearness index Kt (ratio of daily global solar radiation on the extraterrestrial solar radiation). Then, by a simple calculation, the DGSR is deducted from the Kt. The results showed that the developed hybrid model SARIMA_SVM improves slightly the prediction of DGSR compared to the conventional SARIMA model.","PeriodicalId":180557,"journal":{"name":"2016 International Renewable and Sustainable Energy Conference (IRSEC)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"SARIMA-SVM hybrid model for the prediction of daily global solar radiation time series\",\"authors\":\"S. Boualit, A. Mellit\",\"doi\":\"10.1109/IRSEC.2016.7983867\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The measured solar radiation at the ground level is behaving like a very random variable, because of various disturbances encountered throughout its trajectory through the atmosphere in particular; winds, cloudiness, humidity and temperature variations… etc. As the accumulated daily global solar energy is an indispensable parameter for designing of solar systems (photovoltaic and thermal) and its prior knowledge (prediction) is required to control and manage all these solar systems, so we thought improve the predictive model of daily global solar radiation (DGSR) time series. A hybrid model based on the methodology of Box & Jenkins (SARIMA; Seasonal Auto-Regressive Integrated Moving Average) and SVM (Support Vector Machine) is elaborated to predict the clearness index Kt (ratio of daily global solar radiation on the extraterrestrial solar radiation). Then, by a simple calculation, the DGSR is deducted from the Kt. The results showed that the developed hybrid model SARIMA_SVM improves slightly the prediction of DGSR compared to the conventional SARIMA model.\",\"PeriodicalId\":180557,\"journal\":{\"name\":\"2016 International Renewable and Sustainable Energy Conference (IRSEC)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Renewable and Sustainable Energy Conference (IRSEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRSEC.2016.7983867\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Renewable and Sustainable Energy Conference (IRSEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRSEC.2016.7983867","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

地面测量的太阳辐射表现得像一个非常随机的变量,因为它在穿越大气层的轨迹中遇到了各种各样的干扰;风、云量、湿度和温度变化等等。由于日太阳总辐射是太阳能系统(光伏和热)设计中不可缺少的参数,并且需要其先验知识(预测)来控制和管理所有的太阳能系统,因此我们考虑改进日太阳总辐射(DGSR)时间序列的预测模型。基于Box & Jenkins (SARIMA;阐述了季节自回归综合移动平均和支持向量机(SVM)预测太阳日全球辐射与地外太阳辐射之比(Kt)的清晰度指数。然后,通过简单的计算,从Kt中扣除DGSR。结果表明,与传统的SARIMA模型相比,所建立的混合模型SARIMA_SVM对DGSR的预测略有提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SARIMA-SVM hybrid model for the prediction of daily global solar radiation time series
The measured solar radiation at the ground level is behaving like a very random variable, because of various disturbances encountered throughout its trajectory through the atmosphere in particular; winds, cloudiness, humidity and temperature variations… etc. As the accumulated daily global solar energy is an indispensable parameter for designing of solar systems (photovoltaic and thermal) and its prior knowledge (prediction) is required to control and manage all these solar systems, so we thought improve the predictive model of daily global solar radiation (DGSR) time series. A hybrid model based on the methodology of Box & Jenkins (SARIMA; Seasonal Auto-Regressive Integrated Moving Average) and SVM (Support Vector Machine) is elaborated to predict the clearness index Kt (ratio of daily global solar radiation on the extraterrestrial solar radiation). Then, by a simple calculation, the DGSR is deducted from the Kt. The results showed that the developed hybrid model SARIMA_SVM improves slightly the prediction of DGSR compared to the conventional SARIMA model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信