使用四维核和线性预测的Mean Shift目标跟踪

Katharina Quast, Christof Kobylko, André Kaup
{"title":"使用四维核和线性预测的Mean Shift目标跟踪","authors":"Katharina Quast, Christof Kobylko, André Kaup","doi":"10.5220/0003327305880593","DOIUrl":null,"url":null,"abstract":"A new mean shift tracker which tracks not only the position but also the size and orientation of an object is presented. By using a four-dimensional kernel, the mean shift iterations are performed in a four-dimensional search space consisting of the image coordinates, a scale and an orientation dimension. Thus, the enhanced mean shift tracker tracks the position, size and orientation of an object simultaneously. To increase the tracking performance by using the information about the position, size and orientation of the object in the previous frames, a linear prediction is also integrated into the 4D kernel tracker. The tracking performance is further improved by considering the gradient norm as an additional object feature.","PeriodicalId":411140,"journal":{"name":"International Conference on Computer Vision Theory and Applications","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mean Shift Object Tracking using a 4D Kernel and Linear Prediction\",\"authors\":\"Katharina Quast, Christof Kobylko, André Kaup\",\"doi\":\"10.5220/0003327305880593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new mean shift tracker which tracks not only the position but also the size and orientation of an object is presented. By using a four-dimensional kernel, the mean shift iterations are performed in a four-dimensional search space consisting of the image coordinates, a scale and an orientation dimension. Thus, the enhanced mean shift tracker tracks the position, size and orientation of an object simultaneously. To increase the tracking performance by using the information about the position, size and orientation of the object in the previous frames, a linear prediction is also integrated into the 4D kernel tracker. The tracking performance is further improved by considering the gradient norm as an additional object feature.\",\"PeriodicalId\":411140,\"journal\":{\"name\":\"International Conference on Computer Vision Theory and Applications\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Computer Vision Theory and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0003327305880593\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Computer Vision Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0003327305880593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种新的平均位移跟踪器,它不仅可以跟踪目标的位置,还可以跟踪目标的大小和方向。通过使用四维核,在由图像坐标、尺度和方向维组成的四维搜索空间中进行平均移位迭代。因此,增强的平均位移跟踪器可以同时跟踪对象的位置、大小和方向。为了利用前几帧中目标的位置、大小和方向信息来提高跟踪性能,在四维核跟踪器中还集成了线性预测。将梯度范数作为附加的目标特征,进一步提高了跟踪性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mean Shift Object Tracking using a 4D Kernel and Linear Prediction
A new mean shift tracker which tracks not only the position but also the size and orientation of an object is presented. By using a four-dimensional kernel, the mean shift iterations are performed in a four-dimensional search space consisting of the image coordinates, a scale and an orientation dimension. Thus, the enhanced mean shift tracker tracks the position, size and orientation of an object simultaneously. To increase the tracking performance by using the information about the position, size and orientation of the object in the previous frames, a linear prediction is also integrated into the 4D kernel tracker. The tracking performance is further improved by considering the gradient norm as an additional object feature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信