使用AWS机器学习云服务对银行用户数据进行预测分析

R. Ramesh
{"title":"使用AWS机器学习云服务对银行用户数据进行预测分析","authors":"R. Ramesh","doi":"10.1109/ICCCT2.2017.7972282","DOIUrl":null,"url":null,"abstract":"The aim of the project is to develop a Machine Learning model to perform predictive analytics on the banking dataset. The banking data set consists of details about customers like and whether the customer will buy a product provided by the bank or not. The data set is obtained from University of California Irvine Machine Learning Repository. This data set is used to create a binary classification model using Amazon Web Service(AWS) Machine Learning platform. 70 % of the data is used to train the binary classification model and 30 % of the dataset is used to test the model. Depending upon the test result we evaluate the essential parameters like precision, recall, accuracy and false positive rates. These parameters evaluate the efficiency of our model. Once we design our model we test our model using two features in AWS Machine learning. One, using real time prediction where we give real time input data and test our model. Two, we do batch prediction, where we have a set of customer data and we upload our data to evaluate our prediction.","PeriodicalId":445567,"journal":{"name":"2017 2nd International Conference on Computing and Communications Technologies (ICCCT)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Predictive analytics for banking user data using AWS Machine Learning cloud service\",\"authors\":\"R. Ramesh\",\"doi\":\"10.1109/ICCCT2.2017.7972282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of the project is to develop a Machine Learning model to perform predictive analytics on the banking dataset. The banking data set consists of details about customers like and whether the customer will buy a product provided by the bank or not. The data set is obtained from University of California Irvine Machine Learning Repository. This data set is used to create a binary classification model using Amazon Web Service(AWS) Machine Learning platform. 70 % of the data is used to train the binary classification model and 30 % of the dataset is used to test the model. Depending upon the test result we evaluate the essential parameters like precision, recall, accuracy and false positive rates. These parameters evaluate the efficiency of our model. Once we design our model we test our model using two features in AWS Machine learning. One, using real time prediction where we give real time input data and test our model. Two, we do batch prediction, where we have a set of customer data and we upload our data to evaluate our prediction.\",\"PeriodicalId\":445567,\"journal\":{\"name\":\"2017 2nd International Conference on Computing and Communications Technologies (ICCCT)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 2nd International Conference on Computing and Communications Technologies (ICCCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCCT2.2017.7972282\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 2nd International Conference on Computing and Communications Technologies (ICCCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCT2.2017.7972282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

该项目的目的是开发一个机器学习模型,对银行数据集进行预测分析。银行数据集包括客户喜欢的详细信息,以及客户是否会购买银行提供的产品。数据集来自加州大学欧文分校机器学习存储库。该数据集用于使用亚马逊网络服务(AWS)机器学习平台创建二进制分类模型。70%的数据用于训练二分类模型,30%的数据集用于测试模型。根据测试结果,我们评估基本参数,如精度,召回率,准确性和假阳性率。这些参数评价了我们模型的效率。一旦我们设计了我们的模型,我们就使用AWS机器学习中的两个特征来测试我们的模型。第一,使用实时预测,我们提供实时输入数据并测试我们的模型。第二,我们做批量预测,我们有一组客户数据,我们上传我们的数据来评估我们的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predictive analytics for banking user data using AWS Machine Learning cloud service
The aim of the project is to develop a Machine Learning model to perform predictive analytics on the banking dataset. The banking data set consists of details about customers like and whether the customer will buy a product provided by the bank or not. The data set is obtained from University of California Irvine Machine Learning Repository. This data set is used to create a binary classification model using Amazon Web Service(AWS) Machine Learning platform. 70 % of the data is used to train the binary classification model and 30 % of the dataset is used to test the model. Depending upon the test result we evaluate the essential parameters like precision, recall, accuracy and false positive rates. These parameters evaluate the efficiency of our model. Once we design our model we test our model using two features in AWS Machine learning. One, using real time prediction where we give real time input data and test our model. Two, we do batch prediction, where we have a set of customer data and we upload our data to evaluate our prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信