改进了分段仿射系统的基于分块和顶点相关Lyapunov函数的稳定性判据

Jun Xu, Lihua Xie
{"title":"改进了分段仿射系统的基于分块和顶点相关Lyapunov函数的稳定性判据","authors":"Jun Xu, Lihua Xie","doi":"10.1109/ICIEA.2012.6360903","DOIUrl":null,"url":null,"abstract":"In this paper, we present two improved stability criteria for a class of piecewise affine systems. First, by applying a partition-dependent Lyapunov function, we present a stability result based on copositive matrices which can be solved by the linear matrix inequality (LMI) technique. Second, to further reduce the conservatism of stability analysis, we construct a vertex-dependent Lyapunov function for each partition and show how to use Sum-of-Square (SOS) technique and Pólya's Lemma to calculate the corresponding Lyapunov matrices and hence assert the system stability.","PeriodicalId":220747,"journal":{"name":"2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Improved stability criteria for piecewise affine systems based on partition- and vertex-dependent Lyapunov functions\",\"authors\":\"Jun Xu, Lihua Xie\",\"doi\":\"10.1109/ICIEA.2012.6360903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present two improved stability criteria for a class of piecewise affine systems. First, by applying a partition-dependent Lyapunov function, we present a stability result based on copositive matrices which can be solved by the linear matrix inequality (LMI) technique. Second, to further reduce the conservatism of stability analysis, we construct a vertex-dependent Lyapunov function for each partition and show how to use Sum-of-Square (SOS) technique and Pólya's Lemma to calculate the corresponding Lyapunov matrices and hence assert the system stability.\",\"PeriodicalId\":220747,\"journal\":{\"name\":\"2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIEA.2012.6360903\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEA.2012.6360903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文给出了一类分段仿射系统的两个改进的稳定性判据。首先,利用分划相关的Lyapunov函数,给出了一个基于组合矩阵的稳定性结果,该结果可以用线性矩阵不等式(LMI)技术求解。其次,为了进一步降低稳定性分析的保守性,我们为每个分区构造了一个与顶点相关的Lyapunov函数,并展示了如何使用平方和(SOS)技术和Pólya引理来计算相应的Lyapunov矩阵,从而确定系统的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved stability criteria for piecewise affine systems based on partition- and vertex-dependent Lyapunov functions
In this paper, we present two improved stability criteria for a class of piecewise affine systems. First, by applying a partition-dependent Lyapunov function, we present a stability result based on copositive matrices which can be solved by the linear matrix inequality (LMI) technique. Second, to further reduce the conservatism of stability analysis, we construct a vertex-dependent Lyapunov function for each partition and show how to use Sum-of-Square (SOS) technique and Pólya's Lemma to calculate the corresponding Lyapunov matrices and hence assert the system stability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信