基于稀疏编码的纹理图像检索算法改进

Yansi Yang, Yingyun Yang, Xuan Zeng
{"title":"基于稀疏编码的纹理图像检索算法改进","authors":"Yansi Yang, Yingyun Yang, Xuan Zeng","doi":"10.1109/CyberC.2012.92","DOIUrl":null,"url":null,"abstract":"The demerits of the texture image retrieval algorithm based on sparse coding are found expression in the low recall and inconspicuous serial priority of qualified images. Several methods are presented in this paper to improve the performance of the image retrieval algorithm. Firstly, Brodatz texture image filter basis function is used for processing the texture images, thereafter, the kurtosis is added to generate the eigenvector, finally, the joint-scale filter basis is utilized to advance the filter effect. Experimental results indicate that the performance of the proposed methods is positive.","PeriodicalId":416468,"journal":{"name":"2012 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improvement of Texture Image Retrieval Algorithm Based on Sparse Coding\",\"authors\":\"Yansi Yang, Yingyun Yang, Xuan Zeng\",\"doi\":\"10.1109/CyberC.2012.92\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The demerits of the texture image retrieval algorithm based on sparse coding are found expression in the low recall and inconspicuous serial priority of qualified images. Several methods are presented in this paper to improve the performance of the image retrieval algorithm. Firstly, Brodatz texture image filter basis function is used for processing the texture images, thereafter, the kurtosis is added to generate the eigenvector, finally, the joint-scale filter basis is utilized to advance the filter effect. Experimental results indicate that the performance of the proposed methods is positive.\",\"PeriodicalId\":416468,\"journal\":{\"name\":\"2012 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CyberC.2012.92\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CyberC.2012.92","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于稀疏编码的纹理图像检索算法的缺点主要表现在合格图像的召回率低、序列优先级不显著。本文提出了几种提高图像检索算法性能的方法。首先利用Brodatz纹理图像滤波基函数对纹理图像进行处理,然后加入峰度生成特征向量,最后利用联合尺度滤波基推进滤波效果。实验结果表明,所提方法具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improvement of Texture Image Retrieval Algorithm Based on Sparse Coding
The demerits of the texture image retrieval algorithm based on sparse coding are found expression in the low recall and inconspicuous serial priority of qualified images. Several methods are presented in this paper to improve the performance of the image retrieval algorithm. Firstly, Brodatz texture image filter basis function is used for processing the texture images, thereafter, the kurtosis is added to generate the eigenvector, finally, the joint-scale filter basis is utilized to advance the filter effect. Experimental results indicate that the performance of the proposed methods is positive.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信