D. F. Cruz, E. Rodrigues, R. Godina, C. Cabrita, J. Matias, J. Catalão
{"title":"基于集成模拟前端信号处理模块的便携式多功能生物医学传感器的新方法","authors":"D. F. Cruz, E. Rodrigues, R. Godina, C. Cabrita, J. Matias, J. Catalão","doi":"10.1109/EEEIC.2016.7555657","DOIUrl":null,"url":null,"abstract":"Photoplethysmography (PPG) sensors are an inexpensive yet cost-effective way to track data correlated to the heart pulsation. The information is acquired with light signals generated by means of a photodiode and by detecting the amount of reflected or transmitted light through the tissue. In this paper, a novel methodology that enables a systematic approach for evaluating high compact signal processing designs, which are now a trend among several semiconductor manufacturers, is proposed and discussed. In this context, an integrated pulse oximeter sensor is embedded in a custom board and used to test the methodology concept proposed by the authors. Conclusions are duly drawn.","PeriodicalId":246856,"journal":{"name":"2016 IEEE 16th International Conference on Environment and Electrical Engineering (EEEIC)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Novel methodology for integrated analog front-end signal processing blocks based portable multifunctional sensor for biomedical applications\",\"authors\":\"D. F. Cruz, E. Rodrigues, R. Godina, C. Cabrita, J. Matias, J. Catalão\",\"doi\":\"10.1109/EEEIC.2016.7555657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Photoplethysmography (PPG) sensors are an inexpensive yet cost-effective way to track data correlated to the heart pulsation. The information is acquired with light signals generated by means of a photodiode and by detecting the amount of reflected or transmitted light through the tissue. In this paper, a novel methodology that enables a systematic approach for evaluating high compact signal processing designs, which are now a trend among several semiconductor manufacturers, is proposed and discussed. In this context, an integrated pulse oximeter sensor is embedded in a custom board and used to test the methodology concept proposed by the authors. Conclusions are duly drawn.\",\"PeriodicalId\":246856,\"journal\":{\"name\":\"2016 IEEE 16th International Conference on Environment and Electrical Engineering (EEEIC)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 16th International Conference on Environment and Electrical Engineering (EEEIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EEEIC.2016.7555657\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 16th International Conference on Environment and Electrical Engineering (EEEIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EEEIC.2016.7555657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Novel methodology for integrated analog front-end signal processing blocks based portable multifunctional sensor for biomedical applications
Photoplethysmography (PPG) sensors are an inexpensive yet cost-effective way to track data correlated to the heart pulsation. The information is acquired with light signals generated by means of a photodiode and by detecting the amount of reflected or transmitted light through the tissue. In this paper, a novel methodology that enables a systematic approach for evaluating high compact signal processing designs, which are now a trend among several semiconductor manufacturers, is proposed and discussed. In this context, an integrated pulse oximeter sensor is embedded in a custom board and used to test the methodology concept proposed by the authors. Conclusions are duly drawn.