后代为稳定的3倍配对

R. Pandharipande
{"title":"后代为稳定的3倍配对","authors":"R. Pandharipande","doi":"10.1090/PSPUM/099/01743","DOIUrl":null,"url":null,"abstract":"We survey here the construction and the basic properties of descendent invariants in the theory of stable pairs on nonsingular projective 3-folds. The main topics covered are the rationality of the generating series, the functional equation, the Gromov-Witten/Pairs correspondence for descendents, the Virasoro constraints, and the connection to the virtual fundamental class of the stable pairs moduli space in algebraic cobordism. In all of these directions, the proven results constitute only a small part of the conjectural framework. A central goal of the article is to introduce the open questions as simply and directly as possible.","PeriodicalId":384712,"journal":{"name":"Proceedings of Symposia in Pure\n Mathematics","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Descendents for stable pairs on\\n 3-folds\",\"authors\":\"R. Pandharipande\",\"doi\":\"10.1090/PSPUM/099/01743\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We survey here the construction and the basic properties of descendent invariants in the theory of stable pairs on nonsingular projective 3-folds. The main topics covered are the rationality of the generating series, the functional equation, the Gromov-Witten/Pairs correspondence for descendents, the Virasoro constraints, and the connection to the virtual fundamental class of the stable pairs moduli space in algebraic cobordism. In all of these directions, the proven results constitute only a small part of the conjectural framework. A central goal of the article is to introduce the open questions as simply and directly as possible.\",\"PeriodicalId\":384712,\"journal\":{\"name\":\"Proceedings of Symposia in Pure\\n Mathematics\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Symposia in Pure\\n Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/PSPUM/099/01743\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Symposia in Pure\n Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/PSPUM/099/01743","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

本文研究了非奇异射影3折上稳定对理论中子不变量的构造和基本性质。主要内容包括:生成级数的合理性,泛函方程,后代的Gromov-Witten/Pairs对应,Virasoro约束,以及与代数共坐标中稳定对模空间的虚基类的联系。在所有这些方向上,已证明的结果只构成猜想框架的一小部分。本文的中心目标是尽可能简单直接地介绍开放性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Descendents for stable pairs on 3-folds
We survey here the construction and the basic properties of descendent invariants in the theory of stable pairs on nonsingular projective 3-folds. The main topics covered are the rationality of the generating series, the functional equation, the Gromov-Witten/Pairs correspondence for descendents, the Virasoro constraints, and the connection to the virtual fundamental class of the stable pairs moduli space in algebraic cobordism. In all of these directions, the proven results constitute only a small part of the conjectural framework. A central goal of the article is to introduce the open questions as simply and directly as possible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信