用于生物膜失活的低温常压等离子体阵列

Adam Croteau, A. White, Z. Kennedy, J. Carlson, Spencer Goering, Mariah Provost, M. Sullivan, K. Cornell, D. Plumlee, J. Browning
{"title":"用于生物膜失活的低温常压等离子体阵列","authors":"Adam Croteau, A. White, Z. Kennedy, J. Carlson, Spencer Goering, Mariah Provost, M. Sullivan, K. Cornell, D. Plumlee, J. Browning","doi":"10.1109/ICOPS37625.2020.9717842","DOIUrl":null,"url":null,"abstract":"Cold atmospheric pressure (CAP) plasma has been shown to kill bacteria and remove biofilms. This could be useful in the food processing industry where microbial contamination of food contact surfaces are a source of foodborne illness. Single linear plasma discharge devices lack the spatial coverage that an array of discharges offers, and common plasma jet arrays require dithering or other means of movement to cover the same area. Our group has developed a CAP array assembled from multiple linear discharges that can be used to inactivate bacterial biofilms over large treatment areas. Each linear discharge consists of 2 opposing metal electrodes ($24\\ \\text{mm}\\times 1\\ \\text{mm}$) buried below $125\\ \\mu\\mathrm{m}$ of Low Temperature Co-fired Ceramic (LTCC). The gap between electrodes is $750\\ \\mu\\mathrm{m}$. These devices operate with an AC voltage (0.5-2 kV), an Argon gas flow (3–13 LPM), and a typical discharge current from a single element of 1–2 mA. To form arrays of discharge elements, stacks of linear discharge elements containing two opposing embedded electrodes are assembled. To ensure uniformity of the discharge elements, we have tested external ballast resistances of 1, 100, 200 $\\mathrm{k}\\Omega$, and demonstrated the importance of resistances between 100 $\\mathrm{k}\\Omega$ and 200 $\\mathrm{k}\\Omega$ on discharge uniformity. In a different configuration, internal ballast resistors are used. The HV AC electrodes can then share a common electrical connection so that only 2 wires are needed to drive the array elements in parallel. Internal ballast resistors, fabricated using a DuPont thick film resistor paste, are used to create $\\approx 150\\ \\mathrm{k}\\Omega$ resistors on the ground side of each discharge element embedded within the LTCC substrate. An 8 element discharge array has been demonstrated with an area of $29\\ \\text{mm}\\times 15\\ \\text{mm}$. The devices are designed for modularity when adding additional discharge elements. We demonstrate the effectiveness of these devices in inactivating common foodborne pathogens and spoilage organisms (E. coli, Pseudomonas, etc) in biofilms formed on steel, glass, and plastic substrates. We see a dramatic reduction in viable Colony Forming Units of >90% with short plasma treatment. These results will be presented.","PeriodicalId":122132,"journal":{"name":"2020 IEEE International Conference on Plasma Science (ICOPS)","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cold Atmospheric Pressure Plasma Array for Biofilm Inactivation\",\"authors\":\"Adam Croteau, A. White, Z. Kennedy, J. Carlson, Spencer Goering, Mariah Provost, M. Sullivan, K. Cornell, D. Plumlee, J. Browning\",\"doi\":\"10.1109/ICOPS37625.2020.9717842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cold atmospheric pressure (CAP) plasma has been shown to kill bacteria and remove biofilms. This could be useful in the food processing industry where microbial contamination of food contact surfaces are a source of foodborne illness. Single linear plasma discharge devices lack the spatial coverage that an array of discharges offers, and common plasma jet arrays require dithering or other means of movement to cover the same area. Our group has developed a CAP array assembled from multiple linear discharges that can be used to inactivate bacterial biofilms over large treatment areas. Each linear discharge consists of 2 opposing metal electrodes ($24\\\\ \\\\text{mm}\\\\times 1\\\\ \\\\text{mm}$) buried below $125\\\\ \\\\mu\\\\mathrm{m}$ of Low Temperature Co-fired Ceramic (LTCC). The gap between electrodes is $750\\\\ \\\\mu\\\\mathrm{m}$. These devices operate with an AC voltage (0.5-2 kV), an Argon gas flow (3–13 LPM), and a typical discharge current from a single element of 1–2 mA. To form arrays of discharge elements, stacks of linear discharge elements containing two opposing embedded electrodes are assembled. To ensure uniformity of the discharge elements, we have tested external ballast resistances of 1, 100, 200 $\\\\mathrm{k}\\\\Omega$, and demonstrated the importance of resistances between 100 $\\\\mathrm{k}\\\\Omega$ and 200 $\\\\mathrm{k}\\\\Omega$ on discharge uniformity. In a different configuration, internal ballast resistors are used. The HV AC electrodes can then share a common electrical connection so that only 2 wires are needed to drive the array elements in parallel. Internal ballast resistors, fabricated using a DuPont thick film resistor paste, are used to create $\\\\approx 150\\\\ \\\\mathrm{k}\\\\Omega$ resistors on the ground side of each discharge element embedded within the LTCC substrate. An 8 element discharge array has been demonstrated with an area of $29\\\\ \\\\text{mm}\\\\times 15\\\\ \\\\text{mm}$. The devices are designed for modularity when adding additional discharge elements. We demonstrate the effectiveness of these devices in inactivating common foodborne pathogens and spoilage organisms (E. coli, Pseudomonas, etc) in biofilms formed on steel, glass, and plastic substrates. We see a dramatic reduction in viable Colony Forming Units of >90% with short plasma treatment. These results will be presented.\",\"PeriodicalId\":122132,\"journal\":{\"name\":\"2020 IEEE International Conference on Plasma Science (ICOPS)\",\"volume\":\"94 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Plasma Science (ICOPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOPS37625.2020.9717842\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Plasma Science (ICOPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOPS37625.2020.9717842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

冷大气压(CAP)等离子体已被证明可以杀死细菌和去除生物膜。这在食品加工业中可能是有用的,因为食品接触表面的微生物污染是食源性疾病的来源。单线性等离子体放电装置缺乏放电阵列提供的空间覆盖,而普通等离子体射流阵列需要抖动或其他移动方式来覆盖相同的区域。我们的团队已经开发了一种由多个线性放电组合而成的CAP阵列,可用于在大的治疗区域内灭活细菌生物膜。每个线性放电由埋在低温共烧陶瓷(LTCC) $125\ \mu\mathrm{m}$下面的2个相对的金属电极($24\ \text{mm}\times 1\ \text{mm}$)组成。电极之间的间隙为$750\ \mu\mathrm{m}$。这些设备工作在交流电压(0.5-2 kV),氩气流量(3-13 LPM),典型的放电电流从1-2 mA的单个元件。为了形成放电元件阵列,将包含两个相对嵌入电极的线性放电元件堆叠在一起。为了保证放电元件的均匀性,我们测试了1、100、200 $\mathrm{k}\Omega$的外镇流器电阻,证明了100 $\mathrm{k}\Omega$和200 $\mathrm{k}\Omega$之间的电阻对放电均匀性的重要性。在不同的配置中,使用内部镇流器电阻。高压交流电极可以共享一个共同的电气连接,这样只需要2根电线就可以并联驱动阵列元件。内部镇流器电阻器,使用杜邦厚膜电阻器糊状制造,用于在LTCC衬底内嵌入的每个放电元件的接地侧创建$\approx 150\ \mathrm{k}\Omega$电阻器。一个面积为$29\ \text{mm}\times 15\ \text{mm}$的8元放电阵列已被演示。当增加额外的放电元件时,该装置被设计为模块化。我们证明了这些设备在灭活常见的食源性病原体和腐败生物(大肠杆菌,假单胞菌等)在钢铁,玻璃和塑料基底形成的生物膜的有效性。我们看到>90的可存活菌落形成单位急剧减少% with short plasma treatment. These results will be presented.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cold Atmospheric Pressure Plasma Array for Biofilm Inactivation
Cold atmospheric pressure (CAP) plasma has been shown to kill bacteria and remove biofilms. This could be useful in the food processing industry where microbial contamination of food contact surfaces are a source of foodborne illness. Single linear plasma discharge devices lack the spatial coverage that an array of discharges offers, and common plasma jet arrays require dithering or other means of movement to cover the same area. Our group has developed a CAP array assembled from multiple linear discharges that can be used to inactivate bacterial biofilms over large treatment areas. Each linear discharge consists of 2 opposing metal electrodes ($24\ \text{mm}\times 1\ \text{mm}$) buried below $125\ \mu\mathrm{m}$ of Low Temperature Co-fired Ceramic (LTCC). The gap between electrodes is $750\ \mu\mathrm{m}$. These devices operate with an AC voltage (0.5-2 kV), an Argon gas flow (3–13 LPM), and a typical discharge current from a single element of 1–2 mA. To form arrays of discharge elements, stacks of linear discharge elements containing two opposing embedded electrodes are assembled. To ensure uniformity of the discharge elements, we have tested external ballast resistances of 1, 100, 200 $\mathrm{k}\Omega$, and demonstrated the importance of resistances between 100 $\mathrm{k}\Omega$ and 200 $\mathrm{k}\Omega$ on discharge uniformity. In a different configuration, internal ballast resistors are used. The HV AC electrodes can then share a common electrical connection so that only 2 wires are needed to drive the array elements in parallel. Internal ballast resistors, fabricated using a DuPont thick film resistor paste, are used to create $\approx 150\ \mathrm{k}\Omega$ resistors on the ground side of each discharge element embedded within the LTCC substrate. An 8 element discharge array has been demonstrated with an area of $29\ \text{mm}\times 15\ \text{mm}$. The devices are designed for modularity when adding additional discharge elements. We demonstrate the effectiveness of these devices in inactivating common foodborne pathogens and spoilage organisms (E. coli, Pseudomonas, etc) in biofilms formed on steel, glass, and plastic substrates. We see a dramatic reduction in viable Colony Forming Units of >90% with short plasma treatment. These results will be presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信