{"title":"有效的三维数据压缩通过参数化的自由形式的表面补丁","authors":"M. Rodrigues, A. Robinson, Abdulsslam Osman","doi":"10.5220/0003033801300135","DOIUrl":null,"url":null,"abstract":"This paper presents a new method for 3D data compression based on parameterization of surface patches. The technique is applied to data that can be defined as single valued functions; this is the case for 3D patches obtained using standard 3D scanners. The method defines a number of mesh cutting planes and the intersection of planes on the mesh defines a set of sampling points. These points contain an explicit structure that allows us to define parametrically both x and y coordinates. The z values are interpolated using high degree polynomials and results show that compressions over 99% are achieved while preserving the quality of the mesh.","PeriodicalId":408116,"journal":{"name":"2010 International Conference on Signal Processing and Multimedia Applications (SIGMAP)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Efficient 3D data compression through parameterization of free-form surface patches\",\"authors\":\"M. Rodrigues, A. Robinson, Abdulsslam Osman\",\"doi\":\"10.5220/0003033801300135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new method for 3D data compression based on parameterization of surface patches. The technique is applied to data that can be defined as single valued functions; this is the case for 3D patches obtained using standard 3D scanners. The method defines a number of mesh cutting planes and the intersection of planes on the mesh defines a set of sampling points. These points contain an explicit structure that allows us to define parametrically both x and y coordinates. The z values are interpolated using high degree polynomials and results show that compressions over 99% are achieved while preserving the quality of the mesh.\",\"PeriodicalId\":408116,\"journal\":{\"name\":\"2010 International Conference on Signal Processing and Multimedia Applications (SIGMAP)\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Signal Processing and Multimedia Applications (SIGMAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0003033801300135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Signal Processing and Multimedia Applications (SIGMAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0003033801300135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficient 3D data compression through parameterization of free-form surface patches
This paper presents a new method for 3D data compression based on parameterization of surface patches. The technique is applied to data that can be defined as single valued functions; this is the case for 3D patches obtained using standard 3D scanners. The method defines a number of mesh cutting planes and the intersection of planes on the mesh defines a set of sampling points. These points contain an explicit structure that allows us to define parametrically both x and y coordinates. The z values are interpolated using high degree polynomials and results show that compressions over 99% are achieved while preserving the quality of the mesh.