基于鲁棒机器学习的物料输送过程声学分类

Adnan Husaković, E. Pfann, M. Huemer
{"title":"基于鲁棒机器学习的物料输送过程声学分类","authors":"Adnan Husaković, E. Pfann, M. Huemer","doi":"10.1109/NEUREL.2018.8587031","DOIUrl":null,"url":null,"abstract":"This paper discusses the performance of machine learning classification algorithms based on psychoacoustic features for the monitoring of a material transport process. Reliable and robust classification strongly depends on the proper choice of the feature vector. The method of Principal Component Analysis (PCA) is applied in combination with a classification performance analysis of the individual psycho-acoustic feature types in order to select the best performing features and achieve a feature reduction. The resulting feature subsets are applied to a data set of a material transport process.","PeriodicalId":371831,"journal":{"name":"2018 14th Symposium on Neural Networks and Applications (NEUREL)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Robust Machine Learning Based Acoustic Classification of a Material Transport Process\",\"authors\":\"Adnan Husaković, E. Pfann, M. Huemer\",\"doi\":\"10.1109/NEUREL.2018.8587031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses the performance of machine learning classification algorithms based on psychoacoustic features for the monitoring of a material transport process. Reliable and robust classification strongly depends on the proper choice of the feature vector. The method of Principal Component Analysis (PCA) is applied in combination with a classification performance analysis of the individual psycho-acoustic feature types in order to select the best performing features and achieve a feature reduction. The resulting feature subsets are applied to a data set of a material transport process.\",\"PeriodicalId\":371831,\"journal\":{\"name\":\"2018 14th Symposium on Neural Networks and Applications (NEUREL)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 14th Symposium on Neural Networks and Applications (NEUREL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEUREL.2018.8587031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 14th Symposium on Neural Networks and Applications (NEUREL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEUREL.2018.8587031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文讨论了基于心理声学特征的机器学习分类算法在监测物料运输过程中的性能。可靠和稳健的分类很大程度上依赖于特征向量的正确选择。将主成分分析(PCA)方法与个体心理声学特征类型的分类性能分析相结合,以选择表现最佳的特征并实现特征约简。将得到的特征子集应用于材料运输过程的数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust Machine Learning Based Acoustic Classification of a Material Transport Process
This paper discusses the performance of machine learning classification algorithms based on psychoacoustic features for the monitoring of a material transport process. Reliable and robust classification strongly depends on the proper choice of the feature vector. The method of Principal Component Analysis (PCA) is applied in combination with a classification performance analysis of the individual psycho-acoustic feature types in order to select the best performing features and achieve a feature reduction. The resulting feature subsets are applied to a data set of a material transport process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信