J. Williamson, Andrew Dumas, A. Hess, Tejash Patel, B. Telfer, M. Buller
{"title":"基于可穿戴加速度计的步态不对称检测与跟踪","authors":"J. Williamson, Andrew Dumas, A. Hess, Tejash Patel, B. Telfer, M. Buller","doi":"10.1109/BSN.2015.7299355","DOIUrl":null,"url":null,"abstract":"Gait asymmetry can be a useful indicator of a variety of medical and pathological conditions, including musculoskeletal injury (MSI), neurological damage associated with stroke or head trauma, and a variety of age-related disorders. Body-worn accelerometers can enable real-time monitoring and detection of changes in gait asymmetry, thereby informing medical conditions and triggering timely interventions. We propose a practical and robust algorithm for detecting gait asymmetry based on summary statistics extracted from accelerometers attached to each foot. By registering simultaneous acceleration differences between the two feet, these asymmetry features provide robustness to a variety of confounding factors, such as changes in walking speed and load carriage. Evaluating the algorithm on natural walking data with induced gait asymmetries, we demonstrate that the extracted features are sensitive to the sign and magnitude of gait asymmetries and enable the detection and tracking of asymmetries during continuous monitoring.","PeriodicalId":447934,"journal":{"name":"2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","volume":"143 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Detecting and tracking gait asymmetries with wearable accelerometers\",\"authors\":\"J. Williamson, Andrew Dumas, A. Hess, Tejash Patel, B. Telfer, M. Buller\",\"doi\":\"10.1109/BSN.2015.7299355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gait asymmetry can be a useful indicator of a variety of medical and pathological conditions, including musculoskeletal injury (MSI), neurological damage associated with stroke or head trauma, and a variety of age-related disorders. Body-worn accelerometers can enable real-time monitoring and detection of changes in gait asymmetry, thereby informing medical conditions and triggering timely interventions. We propose a practical and robust algorithm for detecting gait asymmetry based on summary statistics extracted from accelerometers attached to each foot. By registering simultaneous acceleration differences between the two feet, these asymmetry features provide robustness to a variety of confounding factors, such as changes in walking speed and load carriage. Evaluating the algorithm on natural walking data with induced gait asymmetries, we demonstrate that the extracted features are sensitive to the sign and magnitude of gait asymmetries and enable the detection and tracking of asymmetries during continuous monitoring.\",\"PeriodicalId\":447934,\"journal\":{\"name\":\"2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN)\",\"volume\":\"143 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BSN.2015.7299355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN.2015.7299355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Detecting and tracking gait asymmetries with wearable accelerometers
Gait asymmetry can be a useful indicator of a variety of medical and pathological conditions, including musculoskeletal injury (MSI), neurological damage associated with stroke or head trauma, and a variety of age-related disorders. Body-worn accelerometers can enable real-time monitoring and detection of changes in gait asymmetry, thereby informing medical conditions and triggering timely interventions. We propose a practical and robust algorithm for detecting gait asymmetry based on summary statistics extracted from accelerometers attached to each foot. By registering simultaneous acceleration differences between the two feet, these asymmetry features provide robustness to a variety of confounding factors, such as changes in walking speed and load carriage. Evaluating the algorithm on natural walking data with induced gait asymmetries, we demonstrate that the extracted features are sensitive to the sign and magnitude of gait asymmetries and enable the detection and tracking of asymmetries during continuous monitoring.