{"title":"基于各向异性均值偏移的皮肤损伤模糊c均值分割","authors":"Huiyu Zhou, G. Schaefer, A. Sadka, M. E. Celebi","doi":"10.1145/1456223.1456313","DOIUrl":null,"url":null,"abstract":"Image segmentation is a crucial stage in the analysis of dermoscopic images as the extraction of exact boundaries of skin lesions is esseintial for accurate diagnosis. One approach to image segmentation is based on the idea of clustering pixels with similar characteristics. Fuzzy c-means is a popular clustering based algorithm that is often employed in medical image segmentation, however due to its iterative nature also has excessive computational requirements. In this paper we introduce a new mean shift based fuzzy c-means algorithm that requires less computational time compared to previous techniques while providing good segmentation performance. The proposed segmentation method incorporates a mean field term within the standard fuzzy c-means objective function. Since mean shift can quickly and reliably find cluster centres, the entire strategy is capable of effeciently detecting regions within an image. Experimental results on a large dataset of dermoscopic images demonstrates that our algorithm is able to accurately and efficiently extract skin lesion borders.","PeriodicalId":309453,"journal":{"name":"International Conference on Soft Computing as Transdisciplinary Science and Technology","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Anisotropic mean shift based fuzzy c-means segmentation of skin lesions\",\"authors\":\"Huiyu Zhou, G. Schaefer, A. Sadka, M. E. Celebi\",\"doi\":\"10.1145/1456223.1456313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image segmentation is a crucial stage in the analysis of dermoscopic images as the extraction of exact boundaries of skin lesions is esseintial for accurate diagnosis. One approach to image segmentation is based on the idea of clustering pixels with similar characteristics. Fuzzy c-means is a popular clustering based algorithm that is often employed in medical image segmentation, however due to its iterative nature also has excessive computational requirements. In this paper we introduce a new mean shift based fuzzy c-means algorithm that requires less computational time compared to previous techniques while providing good segmentation performance. The proposed segmentation method incorporates a mean field term within the standard fuzzy c-means objective function. Since mean shift can quickly and reliably find cluster centres, the entire strategy is capable of effeciently detecting regions within an image. Experimental results on a large dataset of dermoscopic images demonstrates that our algorithm is able to accurately and efficiently extract skin lesion borders.\",\"PeriodicalId\":309453,\"journal\":{\"name\":\"International Conference on Soft Computing as Transdisciplinary Science and Technology\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Soft Computing as Transdisciplinary Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1456223.1456313\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Soft Computing as Transdisciplinary Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1456223.1456313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Anisotropic mean shift based fuzzy c-means segmentation of skin lesions
Image segmentation is a crucial stage in the analysis of dermoscopic images as the extraction of exact boundaries of skin lesions is esseintial for accurate diagnosis. One approach to image segmentation is based on the idea of clustering pixels with similar characteristics. Fuzzy c-means is a popular clustering based algorithm that is often employed in medical image segmentation, however due to its iterative nature also has excessive computational requirements. In this paper we introduce a new mean shift based fuzzy c-means algorithm that requires less computational time compared to previous techniques while providing good segmentation performance. The proposed segmentation method incorporates a mean field term within the standard fuzzy c-means objective function. Since mean shift can quickly and reliably find cluster centres, the entire strategy is capable of effeciently detecting regions within an image. Experimental results on a large dataset of dermoscopic images demonstrates that our algorithm is able to accurately and efficiently extract skin lesion borders.