R. Gong, Qin Wang, Martin Danelljan, Dengxin Dai, L. Gool
{"title":"基于隐式神经表征的连续伪标签纠偏领域自适应语义分割","authors":"R. Gong, Qin Wang, Martin Danelljan, Dengxin Dai, L. Gool","doi":"10.1109/CVPR52729.2023.00698","DOIUrl":null,"url":null,"abstract":"Unsupervised domain adaptation (UDA) for semantic segmentation aims at improving the model performance on the unlabeled target domain by leveraging a labeled source domain. Existing approaches have achieved impressive progress by utilizing pseudo-labels on the unlabeled target-domain images. Yet the low-quality pseudo-labels, arising from the domain discrepancy, inevitably hinder the adaptation. This calls for effective and accurate approaches to estimating the reliability of the pseudo-labels, in order to rectify them. In this paper, we propose to estimate the rectification values of the predicted pseudo-labels with implicit neural representations. We view the rectification value as a signal defined over the continuous spatial domain. Taking an image coordinate and the nearby deep features as inputs, the rectification value at a given coordinate is predicted as an output. This allows us to achieve high-resolution and detailed rectification values estimation, important for accurate pseudo-label generation at mask boundaries in particular. The rectified pseudo-labels are then leveraged in our rectification-aware mixture model (RMM) to be learned end-to-end and help the adaptation. We demonstrate the effectiveness of our approach on different UDA benchmarks, including synthetic-to-real and day-to-night. Our approach achieves superior results compared to state-of-the-art. The implementation is available at https://github.com/ETHRuiGong/IR2F.","PeriodicalId":376416,"journal":{"name":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Continuous Pseudo-Label Rectified Domain Adaptive Semantic Segmentation with Implicit Neural Representations\",\"authors\":\"R. Gong, Qin Wang, Martin Danelljan, Dengxin Dai, L. Gool\",\"doi\":\"10.1109/CVPR52729.2023.00698\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unsupervised domain adaptation (UDA) for semantic segmentation aims at improving the model performance on the unlabeled target domain by leveraging a labeled source domain. Existing approaches have achieved impressive progress by utilizing pseudo-labels on the unlabeled target-domain images. Yet the low-quality pseudo-labels, arising from the domain discrepancy, inevitably hinder the adaptation. This calls for effective and accurate approaches to estimating the reliability of the pseudo-labels, in order to rectify them. In this paper, we propose to estimate the rectification values of the predicted pseudo-labels with implicit neural representations. We view the rectification value as a signal defined over the continuous spatial domain. Taking an image coordinate and the nearby deep features as inputs, the rectification value at a given coordinate is predicted as an output. This allows us to achieve high-resolution and detailed rectification values estimation, important for accurate pseudo-label generation at mask boundaries in particular. The rectified pseudo-labels are then leveraged in our rectification-aware mixture model (RMM) to be learned end-to-end and help the adaptation. We demonstrate the effectiveness of our approach on different UDA benchmarks, including synthetic-to-real and day-to-night. Our approach achieves superior results compared to state-of-the-art. The implementation is available at https://github.com/ETHRuiGong/IR2F.\",\"PeriodicalId\":376416,\"journal\":{\"name\":\"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR52729.2023.00698\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR52729.2023.00698","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Unsupervised domain adaptation (UDA) for semantic segmentation aims at improving the model performance on the unlabeled target domain by leveraging a labeled source domain. Existing approaches have achieved impressive progress by utilizing pseudo-labels on the unlabeled target-domain images. Yet the low-quality pseudo-labels, arising from the domain discrepancy, inevitably hinder the adaptation. This calls for effective and accurate approaches to estimating the reliability of the pseudo-labels, in order to rectify them. In this paper, we propose to estimate the rectification values of the predicted pseudo-labels with implicit neural representations. We view the rectification value as a signal defined over the continuous spatial domain. Taking an image coordinate and the nearby deep features as inputs, the rectification value at a given coordinate is predicted as an output. This allows us to achieve high-resolution and detailed rectification values estimation, important for accurate pseudo-label generation at mask boundaries in particular. The rectified pseudo-labels are then leveraged in our rectification-aware mixture model (RMM) to be learned end-to-end and help the adaptation. We demonstrate the effectiveness of our approach on different UDA benchmarks, including synthetic-to-real and day-to-night. Our approach achieves superior results compared to state-of-the-art. The implementation is available at https://github.com/ETHRuiGong/IR2F.