Xingwei Sun, Ziteng Wang, Risheng Xia, Junfeng Li, Yonghong Yan
{"title":"转向矢量估计对MVDR波束形成器噪声语音识别的影响","authors":"Xingwei Sun, Ziteng Wang, Risheng Xia, Junfeng Li, Yonghong Yan","doi":"10.1109/ICDSP.2018.8631808","DOIUrl":null,"url":null,"abstract":"The minimum variance distortionless response (MV-DR) beamformer is a widely used beamforming technique that extracts sound components coming from a direction specified by a steering vector. In this paper, we present four different steering vector estimation methods and analyze their influence on the MVDR beamformer in speech recognition. The first one is based on the direction of arrival under the plane wave propagation assumption with the prior knowledge of microphone array geometry. The other three methods are based on the decomposition of the observed speech covariance matrix, including the covariance subtraction based method, the eigenvalue decomposition based method, and the generalized eigenvalue decomposition (GEVD) based method. We theoretically prove that the three decomposition based methods are equivalent under the narrowband approximation or after the rank -1 speech covariance matrix approximation. The speech recognition experiments conducted on the CHiME-3 dataset shows that the MVDR beamformer using GEVD-based steering vector estimation achieves the best performance, and word error rates can be further reduced with the rank -1 approximation.","PeriodicalId":218806,"journal":{"name":"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Effect of Steering Vector Estimation on MVDR Beamformer for Noisy Speech Recognition\",\"authors\":\"Xingwei Sun, Ziteng Wang, Risheng Xia, Junfeng Li, Yonghong Yan\",\"doi\":\"10.1109/ICDSP.2018.8631808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The minimum variance distortionless response (MV-DR) beamformer is a widely used beamforming technique that extracts sound components coming from a direction specified by a steering vector. In this paper, we present four different steering vector estimation methods and analyze their influence on the MVDR beamformer in speech recognition. The first one is based on the direction of arrival under the plane wave propagation assumption with the prior knowledge of microphone array geometry. The other three methods are based on the decomposition of the observed speech covariance matrix, including the covariance subtraction based method, the eigenvalue decomposition based method, and the generalized eigenvalue decomposition (GEVD) based method. We theoretically prove that the three decomposition based methods are equivalent under the narrowband approximation or after the rank -1 speech covariance matrix approximation. The speech recognition experiments conducted on the CHiME-3 dataset shows that the MVDR beamformer using GEVD-based steering vector estimation achieves the best performance, and word error rates can be further reduced with the rank -1 approximation.\",\"PeriodicalId\":218806,\"journal\":{\"name\":\"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSP.2018.8631808\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2018.8631808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of Steering Vector Estimation on MVDR Beamformer for Noisy Speech Recognition
The minimum variance distortionless response (MV-DR) beamformer is a widely used beamforming technique that extracts sound components coming from a direction specified by a steering vector. In this paper, we present four different steering vector estimation methods and analyze their influence on the MVDR beamformer in speech recognition. The first one is based on the direction of arrival under the plane wave propagation assumption with the prior knowledge of microphone array geometry. The other three methods are based on the decomposition of the observed speech covariance matrix, including the covariance subtraction based method, the eigenvalue decomposition based method, and the generalized eigenvalue decomposition (GEVD) based method. We theoretically prove that the three decomposition based methods are equivalent under the narrowband approximation or after the rank -1 speech covariance matrix approximation. The speech recognition experiments conducted on the CHiME-3 dataset shows that the MVDR beamformer using GEVD-based steering vector estimation achieves the best performance, and word error rates can be further reduced with the rank -1 approximation.