使用词嵌入和卷积神经网络的乌兹别克新闻分类

I. Rabbimov, S. Kobilov, I. Mporas
{"title":"使用词嵌入和卷积神经网络的乌兹别克新闻分类","authors":"I. Rabbimov, S. Kobilov, I. Mporas","doi":"10.1109/AICT50176.2020.9368822","DOIUrl":null,"url":null,"abstract":"The rapid growth of online news belonging to different categories is causing users to spend a lot of time and effort searching for relevant and important news. Text categorization has a great significance in information retrieval and natural language processing where unstructured text can be organized into predefined categories. In this paper we investigate Uzbek news categorization using a convolution neural network and four word embedding models. We obtain two new word embeddings for Uzbek and present them in the Uzbek news categorization task.","PeriodicalId":136491,"journal":{"name":"2020 IEEE 14th International Conference on Application of Information and Communication Technologies (AICT)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Uzbek News Categorization using Word Embeddings and Convolutional Neural Networks\",\"authors\":\"I. Rabbimov, S. Kobilov, I. Mporas\",\"doi\":\"10.1109/AICT50176.2020.9368822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid growth of online news belonging to different categories is causing users to spend a lot of time and effort searching for relevant and important news. Text categorization has a great significance in information retrieval and natural language processing where unstructured text can be organized into predefined categories. In this paper we investigate Uzbek news categorization using a convolution neural network and four word embedding models. We obtain two new word embeddings for Uzbek and present them in the Uzbek news categorization task.\",\"PeriodicalId\":136491,\"journal\":{\"name\":\"2020 IEEE 14th International Conference on Application of Information and Communication Technologies (AICT)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 14th International Conference on Application of Information and Communication Technologies (AICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AICT50176.2020.9368822\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 14th International Conference on Application of Information and Communication Technologies (AICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICT50176.2020.9368822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

不同类别的在线新闻的快速增长导致用户花费大量的时间和精力来搜索相关和重要的新闻。文本分类在信息检索和自然语言处理中具有重要意义,它可以将非结构化文本组织成预定义的类别。在本文中,我们研究乌兹别克新闻分类使用卷积神经网络和四个词嵌入模型。我们获得了乌兹别克语的两个新词嵌入,并将它们呈现在乌兹别克语新闻分类任务中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uzbek News Categorization using Word Embeddings and Convolutional Neural Networks
The rapid growth of online news belonging to different categories is causing users to spend a lot of time and effort searching for relevant and important news. Text categorization has a great significance in information retrieval and natural language processing where unstructured text can be organized into predefined categories. In this paper we investigate Uzbek news categorization using a convolution neural network and four word embedding models. We obtain two new word embeddings for Uzbek and present them in the Uzbek news categorization task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信