{"title":"一种增强性能的混合局部网格全局星型NoC拓扑","authors":"T. S. Das, P. Ghosal, S. Mohanty, E. Kougianos","doi":"10.1145/2591513.2591544","DOIUrl":null,"url":null,"abstract":"With the rapid increase in the chip density, Network-on-Chip (NoC) is becoming the prevalent architecture for today's complex chip multi processor (CMP) based systems. One of the major challenges of the NoC is to design an enhanced parallel communication centric scalable architecture for the on chip communication. In this paper, a hybrid Mesh based Star topology has been proposed to provide low latency, high throughput and more evenly distributed traffic throughout the network. Simulation results show that a maximum of 62% latency benefit (for size 8x8), 55% (for size 8x8), and 42% (for size 12x12) throughput benefits can be achieved for proposed topology over mesh with a small area overhead.","PeriodicalId":272619,"journal":{"name":"ACM Great Lakes Symposium on VLSI","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A performance enhancing hybrid locally mesh globally star NoC topology\",\"authors\":\"T. S. Das, P. Ghosal, S. Mohanty, E. Kougianos\",\"doi\":\"10.1145/2591513.2591544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid increase in the chip density, Network-on-Chip (NoC) is becoming the prevalent architecture for today's complex chip multi processor (CMP) based systems. One of the major challenges of the NoC is to design an enhanced parallel communication centric scalable architecture for the on chip communication. In this paper, a hybrid Mesh based Star topology has been proposed to provide low latency, high throughput and more evenly distributed traffic throughout the network. Simulation results show that a maximum of 62% latency benefit (for size 8x8), 55% (for size 8x8), and 42% (for size 12x12) throughput benefits can be achieved for proposed topology over mesh with a small area overhead.\",\"PeriodicalId\":272619,\"journal\":{\"name\":\"ACM Great Lakes Symposium on VLSI\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Great Lakes Symposium on VLSI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2591513.2591544\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Great Lakes Symposium on VLSI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2591513.2591544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A performance enhancing hybrid locally mesh globally star NoC topology
With the rapid increase in the chip density, Network-on-Chip (NoC) is becoming the prevalent architecture for today's complex chip multi processor (CMP) based systems. One of the major challenges of the NoC is to design an enhanced parallel communication centric scalable architecture for the on chip communication. In this paper, a hybrid Mesh based Star topology has been proposed to provide low latency, high throughput and more evenly distributed traffic throughout the network. Simulation results show that a maximum of 62% latency benefit (for size 8x8), 55% (for size 8x8), and 42% (for size 12x12) throughput benefits can be achieved for proposed topology over mesh with a small area overhead.