D. Cheney, A. Goh, Jie Xu, K. Gugel, J.G. Harris, J. Sánchez, J. Príncipe
{"title":"无线,在体内神经记录使用定制集成生物放大器和Pico系统","authors":"D. Cheney, A. Goh, Jie Xu, K. Gugel, J.G. Harris, J. Sánchez, J. Príncipe","doi":"10.1109/CNE.2007.369601","DOIUrl":null,"url":null,"abstract":"This paper describes a wireless system for sampling multiple channels of neural activity based on a low-power, custom 80dB-gain integrated bioamplifier, Texas Instrument's MSP430 microprocessors, and Nordic Semiconductor's ultra low power, high bandwidth RF transmitter/receivers. The system's features are presented as well as results of spike potentials from a live subject.","PeriodicalId":427054,"journal":{"name":"2007 3rd International IEEE/EMBS Conference on Neural Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Wireless, In Vivo Neural Recording using a Custom Integrated Bioamplifier and the Pico System\",\"authors\":\"D. Cheney, A. Goh, Jie Xu, K. Gugel, J.G. Harris, J. Sánchez, J. Príncipe\",\"doi\":\"10.1109/CNE.2007.369601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a wireless system for sampling multiple channels of neural activity based on a low-power, custom 80dB-gain integrated bioamplifier, Texas Instrument's MSP430 microprocessors, and Nordic Semiconductor's ultra low power, high bandwidth RF transmitter/receivers. The system's features are presented as well as results of spike potentials from a live subject.\",\"PeriodicalId\":427054,\"journal\":{\"name\":\"2007 3rd International IEEE/EMBS Conference on Neural Engineering\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 3rd International IEEE/EMBS Conference on Neural Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CNE.2007.369601\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 3rd International IEEE/EMBS Conference on Neural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNE.2007.369601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Wireless, In Vivo Neural Recording using a Custom Integrated Bioamplifier and the Pico System
This paper describes a wireless system for sampling multiple channels of neural activity based on a low-power, custom 80dB-gain integrated bioamplifier, Texas Instrument's MSP430 microprocessors, and Nordic Semiconductor's ultra low power, high bandwidth RF transmitter/receivers. The system's features are presented as well as results of spike potentials from a live subject.