{"title":"神经网络和元启发式在敏捷软件开发工作量评估中的作用","authors":"Anupama Kaushik, D. Tayal, Kalpana Yadav","doi":"10.4018/ijitpm.2020040104","DOIUrl":null,"url":null,"abstract":"In any software development, accurate estimation of resources is one of the crucial tasks that leads to a successful project development. A lot of work has been done in estimation of effort in traditional software development. But, work on estimation of effort for agile software development is very scant. This paper provides an effort estimation technique for agile software development using artificial neural networks (ANN) and a metaheuristic technique. The artificial neural networks used are radial basis function neural network (RBFN) and functional link artificial neural network (FLANN). The metaheuristic technique used is whale optimization algorithm (WOA), which is a nature-inspired metaheuristic technique. The proposed techniques FLANN-WOA and RBFN-WOA are evaluated on three agile datasets, and it is found that these neural network models performed extremely well with the metaheuristic technique used. This is further empirically validated using non-parametric statistical tests.","PeriodicalId":375999,"journal":{"name":"Int. J. Inf. Technol. Proj. Manag.","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"The Role of Neural Networks and Metaheuristics in Agile Software Development Effort Estimation\",\"authors\":\"Anupama Kaushik, D. Tayal, Kalpana Yadav\",\"doi\":\"10.4018/ijitpm.2020040104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In any software development, accurate estimation of resources is one of the crucial tasks that leads to a successful project development. A lot of work has been done in estimation of effort in traditional software development. But, work on estimation of effort for agile software development is very scant. This paper provides an effort estimation technique for agile software development using artificial neural networks (ANN) and a metaheuristic technique. The artificial neural networks used are radial basis function neural network (RBFN) and functional link artificial neural network (FLANN). The metaheuristic technique used is whale optimization algorithm (WOA), which is a nature-inspired metaheuristic technique. The proposed techniques FLANN-WOA and RBFN-WOA are evaluated on three agile datasets, and it is found that these neural network models performed extremely well with the metaheuristic technique used. This is further empirically validated using non-parametric statistical tests.\",\"PeriodicalId\":375999,\"journal\":{\"name\":\"Int. J. Inf. Technol. Proj. Manag.\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Inf. Technol. Proj. Manag.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijitpm.2020040104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Inf. Technol. Proj. Manag.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijitpm.2020040104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Role of Neural Networks and Metaheuristics in Agile Software Development Effort Estimation
In any software development, accurate estimation of resources is one of the crucial tasks that leads to a successful project development. A lot of work has been done in estimation of effort in traditional software development. But, work on estimation of effort for agile software development is very scant. This paper provides an effort estimation technique for agile software development using artificial neural networks (ANN) and a metaheuristic technique. The artificial neural networks used are radial basis function neural network (RBFN) and functional link artificial neural network (FLANN). The metaheuristic technique used is whale optimization algorithm (WOA), which is a nature-inspired metaheuristic technique. The proposed techniques FLANN-WOA and RBFN-WOA are evaluated on three agile datasets, and it is found that these neural network models performed extremely well with the metaheuristic technique used. This is further empirically validated using non-parametric statistical tests.