算法单一文化与社会福利

𝜃 𝜀
{"title":"算法单一文化与社会福利","authors":"𝜃 𝜀","doi":"10.1145/3603195.3603211","DOIUrl":null,"url":null,"abstract":"Proof. We need to show that Fθ satisfies the differentiability, asymptotic optimality, and monotonicity conditions in Definition 6.1. Differentiability: The probability density of any realization of the n noise samples εi/θ is ∏ n i=1 f (εi/θ). Let ε = [ε1/θ, ... , εn/θ] be the vector of noise values and let M(π) ⊆ Rn be the region such that any ε ∈ M(π) will produce the ranking π. The probability of any permutation π is","PeriodicalId":256315,"journal":{"name":"The Societal Impacts of Algorithmic Decision-Making","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algorithmic Monoculture and Social Welfare\",\"authors\":\"𝜃 𝜀\",\"doi\":\"10.1145/3603195.3603211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Proof. We need to show that Fθ satisfies the differentiability, asymptotic optimality, and monotonicity conditions in Definition 6.1. Differentiability: The probability density of any realization of the n noise samples εi/θ is ∏ n i=1 f (εi/θ). Let ε = [ε1/θ, ... , εn/θ] be the vector of noise values and let M(π) ⊆ Rn be the region such that any ε ∈ M(π) will produce the ranking π. The probability of any permutation π is\",\"PeriodicalId\":256315,\"journal\":{\"name\":\"The Societal Impacts of Algorithmic Decision-Making\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Societal Impacts of Algorithmic Decision-Making\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3603195.3603211\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Societal Impacts of Algorithmic Decision-Making","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3603195.3603211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

证明。我们需要证明Fθ满足定义6.1中的可微性、渐近最优性和单调性条件。可微性:n个噪声样本εi/θ的任意实现的概率密度为∏n i=1 f (εi/θ)。令ε = [ε1/θ,…], εn/θ]为噪声值向量,设M(π)任一个ε∈M(π)都能产生排序π的域。任意排列的概率π是
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algorithmic Monoculture and Social Welfare
Proof. We need to show that Fθ satisfies the differentiability, asymptotic optimality, and monotonicity conditions in Definition 6.1. Differentiability: The probability density of any realization of the n noise samples εi/θ is ∏ n i=1 f (εi/θ). Let ε = [ε1/θ, ... , εn/θ] be the vector of noise values and let M(π) ⊆ Rn be the region such that any ε ∈ M(π) will produce the ranking π. The probability of any permutation π is
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信