六维的超奇异O 'Grady变种

L. Fu, Zhiyuan Li, Haitao Zou
{"title":"六维的超奇异O 'Grady变种","authors":"L. Fu, Zhiyuan Li, Haitao Zou","doi":"10.1093/IMRN/RNAA349","DOIUrl":null,"url":null,"abstract":"O'Grady constructed a 6-dimensional irreducible holomorphic symplectic variety by taking a crepant resolution of some moduli space of stable sheaves on an abelian surface. In this paper, we naturally extend O'Grady's construction to fields of positive characteristic $p\\neq 2$, called OG6 varieties. Assuming $p\\geq 3$, we show that a supersingular OG6 variety is unirational, its rational cohomology group is generated by algebraic classes, and its rational Chow motive is of Tate type. These results confirm in this case the generalized Artin--Shioda conjecture, the supersingular Tate conjecture and the supersingular Bloch conjecture proposed in our previous work, in analogy with the theory of supersingular K3 surfaces.","PeriodicalId":278201,"journal":{"name":"arXiv: Algebraic Geometry","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Supersingular O’Grady Varieties of Dimension Six\",\"authors\":\"L. Fu, Zhiyuan Li, Haitao Zou\",\"doi\":\"10.1093/IMRN/RNAA349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"O'Grady constructed a 6-dimensional irreducible holomorphic symplectic variety by taking a crepant resolution of some moduli space of stable sheaves on an abelian surface. In this paper, we naturally extend O'Grady's construction to fields of positive characteristic $p\\\\neq 2$, called OG6 varieties. Assuming $p\\\\geq 3$, we show that a supersingular OG6 variety is unirational, its rational cohomology group is generated by algebraic classes, and its rational Chow motive is of Tate type. These results confirm in this case the generalized Artin--Shioda conjecture, the supersingular Tate conjecture and the supersingular Bloch conjecture proposed in our previous work, in analogy with the theory of supersingular K3 surfaces.\",\"PeriodicalId\":278201,\"journal\":{\"name\":\"arXiv: Algebraic Geometry\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/IMRN/RNAA349\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/IMRN/RNAA349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

O'Grady通过对阿贝尔曲面上稳定木条的模空间进行渐变分解,构造了一个6维不可约全纯辛变。在本文中,我们很自然地将O'Grady的构造推广到正特征的领域$p\neq 2$,称为OG6品种。假设$p\geq 3$,我们证明了一个超奇异的OG6变种是酉的,它的有理上同群是由代数类生成的,它的有理Chow动机是Tate型的。这些结果在这种情况下证实了在我们之前的工作中提出的广义Artin—Shioda猜想,超奇异Tate猜想和超奇异Bloch猜想,类比于超奇异K3曲面的理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Supersingular O’Grady Varieties of Dimension Six
O'Grady constructed a 6-dimensional irreducible holomorphic symplectic variety by taking a crepant resolution of some moduli space of stable sheaves on an abelian surface. In this paper, we naturally extend O'Grady's construction to fields of positive characteristic $p\neq 2$, called OG6 varieties. Assuming $p\geq 3$, we show that a supersingular OG6 variety is unirational, its rational cohomology group is generated by algebraic classes, and its rational Chow motive is of Tate type. These results confirm in this case the generalized Artin--Shioda conjecture, the supersingular Tate conjecture and the supersingular Bloch conjecture proposed in our previous work, in analogy with the theory of supersingular K3 surfaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信