优化样本复杂度的迭代量子相位估计

E. Berg
{"title":"优化样本复杂度的迭代量子相位估计","authors":"E. Berg","doi":"10.1109/QCE49297.2020.00011","DOIUrl":null,"url":null,"abstract":"In this work we consider Kitaev's algorithm for quantum phase estimation. We analyze the use of phase shifts that simplify the estimation of successive bits in the estimation of unknown phase φ, By using increasingly accurate shifts we reduce the number of measurements to the point where only a single measurement is needed for each additional bit. This results in an algorithm that can estimate φ to $m$ + 2 bits of accuracy with probability at least 1- ∊ using $N$ ∊ + $m$ measurements, where $N$ ∊ is a quantity that depends only on ∊ and the particular sampling algorithm. We present different sampling algorithms and study the exact number of measurements needed through careful numerical evaluation, and provide theoretical bounds and numerical values for $N$ ∊ .","PeriodicalId":117771,"journal":{"name":"International Conference on Quantum Computing and Engineering","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Iterative quantum phase estimation with optimized sample complexity\",\"authors\":\"E. Berg\",\"doi\":\"10.1109/QCE49297.2020.00011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we consider Kitaev's algorithm for quantum phase estimation. We analyze the use of phase shifts that simplify the estimation of successive bits in the estimation of unknown phase φ, By using increasingly accurate shifts we reduce the number of measurements to the point where only a single measurement is needed for each additional bit. This results in an algorithm that can estimate φ to $m$ + 2 bits of accuracy with probability at least 1- ∊ using $N$ ∊ + $m$ measurements, where $N$ ∊ is a quantity that depends only on ∊ and the particular sampling algorithm. We present different sampling algorithms and study the exact number of measurements needed through careful numerical evaluation, and provide theoretical bounds and numerical values for $N$ ∊ .\",\"PeriodicalId\":117771,\"journal\":{\"name\":\"International Conference on Quantum Computing and Engineering\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Quantum Computing and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/QCE49297.2020.00011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Quantum Computing and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QCE49297.2020.00011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在这项工作中,我们考虑Kitaev的量子相位估计算法。我们分析了相移的使用,它简化了对未知相位φ估计中连续位的估计,通过使用越来越精确的位移,我们减少了测量的次数,以至于每个额外的位只需要一次测量。这导致了一个算法可以估计φ到$m$ + 2位的精度,并且使用$N$ + $m$测量值的概率至少为1-,其中$N$是一个仅取决于和特定采样算法的量。我们提出了不同的采样算法,并通过仔细的数值评估研究了所需测量的确切数量,并提供了$N$的理论界限和数值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Iterative quantum phase estimation with optimized sample complexity
In this work we consider Kitaev's algorithm for quantum phase estimation. We analyze the use of phase shifts that simplify the estimation of successive bits in the estimation of unknown phase φ, By using increasingly accurate shifts we reduce the number of measurements to the point where only a single measurement is needed for each additional bit. This results in an algorithm that can estimate φ to $m$ + 2 bits of accuracy with probability at least 1- ∊ using $N$ ∊ + $m$ measurements, where $N$ ∊ is a quantity that depends only on ∊ and the particular sampling algorithm. We present different sampling algorithms and study the exact number of measurements needed through careful numerical evaluation, and provide theoretical bounds and numerical values for $N$ ∊ .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信