多光谱变换的比较

M. A. Patterson
{"title":"多光谱变换的比较","authors":"M. A. Patterson","doi":"10.1109/NAECON.2008.4806518","DOIUrl":null,"url":null,"abstract":"This research compares the results of five multispectral transforms applied to images of carbonized scrolls to determine which transform creates the best readable image. These transforms are vector quantization with principal components analysis, noise subspace projection, interference-and-noise-adjusted principal components analysis, convex cone analysis, and penalized discriminant analysis with principal components analysis. One approach to interference-and-noise-adjusted principal components analysis called signal-to-interference-plus-noise-ratio-based principal components analysis had the highest readability score according to a subjective judgment of 30 randomly selected individuals. However, convex cone analysis created a resultant image with the highest signal-to-noise ratio.","PeriodicalId":254758,"journal":{"name":"2008 IEEE National Aerospace and Electronics Conference","volume":"210 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Comparison of Multispectral Transforms\",\"authors\":\"M. A. Patterson\",\"doi\":\"10.1109/NAECON.2008.4806518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research compares the results of five multispectral transforms applied to images of carbonized scrolls to determine which transform creates the best readable image. These transforms are vector quantization with principal components analysis, noise subspace projection, interference-and-noise-adjusted principal components analysis, convex cone analysis, and penalized discriminant analysis with principal components analysis. One approach to interference-and-noise-adjusted principal components analysis called signal-to-interference-plus-noise-ratio-based principal components analysis had the highest readability score according to a subjective judgment of 30 randomly selected individuals. However, convex cone analysis created a resultant image with the highest signal-to-noise ratio.\",\"PeriodicalId\":254758,\"journal\":{\"name\":\"2008 IEEE National Aerospace and Electronics Conference\",\"volume\":\"210 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE National Aerospace and Electronics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAECON.2008.4806518\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE National Aerospace and Electronics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAECON.2008.4806518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究比较了五种多光谱变换应用于碳化卷轴图像的结果,以确定哪种变换产生最好的可读图像。这些变换是矢量量化与主成分分析、噪声子空间投影、干扰和噪声调整的主成分分析、凸锥分析和惩罚判别分析与主成分分析。根据随机选择的30个人的主观判断,一种干扰和噪声调整的主成分分析方法称为基于信号-干扰-噪声比的主成分分析,其可读性得分最高。然而,凸锥分析产生的结果图像具有最高的信噪比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Comparison of Multispectral Transforms
This research compares the results of five multispectral transforms applied to images of carbonized scrolls to determine which transform creates the best readable image. These transforms are vector quantization with principal components analysis, noise subspace projection, interference-and-noise-adjusted principal components analysis, convex cone analysis, and penalized discriminant analysis with principal components analysis. One approach to interference-and-noise-adjusted principal components analysis called signal-to-interference-plus-noise-ratio-based principal components analysis had the highest readability score according to a subjective judgment of 30 randomly selected individuals. However, convex cone analysis created a resultant image with the highest signal-to-noise ratio.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信