{"title":"粗装配图","authors":"U. Bunke, A. Engel","doi":"10.4171/jncg/410","DOIUrl":null,"url":null,"abstract":"A coarse assembly map relates the coarsification of a generalized homology theory with a coarse version of that homology theory. In the present paper we provide a motivic approach to coarse assembly maps. To every coarse homology theory $E$ we naturally associate a homology theory $E\\mathcal{O}^{\\infty}$ and construct an assembly map $$\\mu_{E} :\\mathrm{Coarsification}(E\\mathcal{O}^{\\infty})\\to E\\ .$$ For sufficiently nice spaces $X$ we relate the value $E\\mathcal{O}^{\\infty}(X)$ with the locally finite homology of $X$ with coefficients in $E(*)$. In the example of coarse $K$-homology we discuss the relation of our motivic constructions with the classical constructions using $C^{*}$-algebra techniques.","PeriodicalId":309711,"journal":{"name":"arXiv: K-Theory and Homology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Coarse assembly maps\",\"authors\":\"U. Bunke, A. Engel\",\"doi\":\"10.4171/jncg/410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A coarse assembly map relates the coarsification of a generalized homology theory with a coarse version of that homology theory. In the present paper we provide a motivic approach to coarse assembly maps. To every coarse homology theory $E$ we naturally associate a homology theory $E\\\\mathcal{O}^{\\\\infty}$ and construct an assembly map $$\\\\mu_{E} :\\\\mathrm{Coarsification}(E\\\\mathcal{O}^{\\\\infty})\\\\to E\\\\ .$$ For sufficiently nice spaces $X$ we relate the value $E\\\\mathcal{O}^{\\\\infty}(X)$ with the locally finite homology of $X$ with coefficients in $E(*)$. In the example of coarse $K$-homology we discuss the relation of our motivic constructions with the classical constructions using $C^{*}$-algebra techniques.\",\"PeriodicalId\":309711,\"journal\":{\"name\":\"arXiv: K-Theory and Homology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/jncg/410\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/jncg/410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A coarse assembly map relates the coarsification of a generalized homology theory with a coarse version of that homology theory. In the present paper we provide a motivic approach to coarse assembly maps. To every coarse homology theory $E$ we naturally associate a homology theory $E\mathcal{O}^{\infty}$ and construct an assembly map $$\mu_{E} :\mathrm{Coarsification}(E\mathcal{O}^{\infty})\to E\ .$$ For sufficiently nice spaces $X$ we relate the value $E\mathcal{O}^{\infty}(X)$ with the locally finite homology of $X$ with coefficients in $E(*)$. In the example of coarse $K$-homology we discuss the relation of our motivic constructions with the classical constructions using $C^{*}$-algebra techniques.