{"title":"原子自旋翻转损失与空间退相干","authors":"R. Fermani, S. Scheel, P. Knight","doi":"10.1556/APH.26.2006.1-2.8","DOIUrl":null,"url":null,"abstract":"We present a first-principles derivation of spatial atomic-sublevel decoherence near dielectric and metallic surfaces. We find that for small lateral separations of the atom’s possible positions, the spatial decoherence decreases quadratically with the separation and inversely to the squared atom-surface distance. In view of potential miniaturization of atom optics, we also present preliminary results on spin flips times near a metallic carbon nanotube.","PeriodicalId":150867,"journal":{"name":"Acta Physica Hungarica B) Quantum Electronics","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atomic spin flip loss and spatial decoherence\",\"authors\":\"R. Fermani, S. Scheel, P. Knight\",\"doi\":\"10.1556/APH.26.2006.1-2.8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a first-principles derivation of spatial atomic-sublevel decoherence near dielectric and metallic surfaces. We find that for small lateral separations of the atom’s possible positions, the spatial decoherence decreases quadratically with the separation and inversely to the squared atom-surface distance. In view of potential miniaturization of atom optics, we also present preliminary results on spin flips times near a metallic carbon nanotube.\",\"PeriodicalId\":150867,\"journal\":{\"name\":\"Acta Physica Hungarica B) Quantum Electronics\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Physica Hungarica B) Quantum Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1556/APH.26.2006.1-2.8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Physica Hungarica B) Quantum Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1556/APH.26.2006.1-2.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We present a first-principles derivation of spatial atomic-sublevel decoherence near dielectric and metallic surfaces. We find that for small lateral separations of the atom’s possible positions, the spatial decoherence decreases quadratically with the separation and inversely to the squared atom-surface distance. In view of potential miniaturization of atom optics, we also present preliminary results on spin flips times near a metallic carbon nanotube.