基于深度学习和特征决策融合的乳腺癌检测

S. .., J. Kumar, Gopal Chaudhary, Manju Khari
{"title":"基于深度学习和特征决策融合的乳腺癌检测","authors":"S. .., J. Kumar, Gopal Chaudhary, Manju Khari","doi":"10.54216/fpa.080105","DOIUrl":null,"url":null,"abstract":"Among women, breast cancer has a high incidence and high fatality rate. Due to a lack of early detection facilities and barriers to accessing technological improvements in battling this illness, mortality rates are disproportionately greater in underdeveloped countries. Biopsies done by trained pathologists are the only certain approach to diagnosing cancer. With the use of computer-aided diagnostic algorithms, pathologists may improve their efficiency, objectivity, and consistency in making diagnoses. A key goal of this research is to create an accurate automated system for diagnosing breast cancer that can function in the current clinical setting. In this work, we offer an algorithm for the identification of breast cancer that uses asymmetric analysis as the basic choice and decision-level fusion. Fusion of local nuclei features extracted using convolutional neural network (CNN) models pre-trained on the database constitutes the picture feature representation. The dataset is accessible for public use, and the results are evaluated by running 25 random trials with an 80%-20% split between train and test. Overall, the suggested framework was 86%. The proposed framework is shown to outperform numerous current methods and to provide results on par with the state-of-the-art techniques without requiring extensive computing resources. Breast cancer detection from histological pictures may be greatly aided by the use of this qualitative approach based on transfer learning.","PeriodicalId":269527,"journal":{"name":"Fusion: Practice and Applications","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Breast Cancer Detection Using Deep Learning and Feature Decision Level Fusion\",\"authors\":\"S. .., J. Kumar, Gopal Chaudhary, Manju Khari\",\"doi\":\"10.54216/fpa.080105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Among women, breast cancer has a high incidence and high fatality rate. Due to a lack of early detection facilities and barriers to accessing technological improvements in battling this illness, mortality rates are disproportionately greater in underdeveloped countries. Biopsies done by trained pathologists are the only certain approach to diagnosing cancer. With the use of computer-aided diagnostic algorithms, pathologists may improve their efficiency, objectivity, and consistency in making diagnoses. A key goal of this research is to create an accurate automated system for diagnosing breast cancer that can function in the current clinical setting. In this work, we offer an algorithm for the identification of breast cancer that uses asymmetric analysis as the basic choice and decision-level fusion. Fusion of local nuclei features extracted using convolutional neural network (CNN) models pre-trained on the database constitutes the picture feature representation. The dataset is accessible for public use, and the results are evaluated by running 25 random trials with an 80%-20% split between train and test. Overall, the suggested framework was 86%. The proposed framework is shown to outperform numerous current methods and to provide results on par with the state-of-the-art techniques without requiring extensive computing resources. Breast cancer detection from histological pictures may be greatly aided by the use of this qualitative approach based on transfer learning.\",\"PeriodicalId\":269527,\"journal\":{\"name\":\"Fusion: Practice and Applications\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fusion: Practice and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54216/fpa.080105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fusion: Practice and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54216/fpa.080105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在妇女中,乳腺癌的发病率和死亡率都很高。由于缺乏早期发现设施和在防治这一疾病方面难以获得技术改进,不发达国家的死亡率高得不成比例。由训练有素的病理学家进行的活组织检查是诊断癌症唯一确定的方法。利用计算机辅助诊断算法,病理学家可以提高诊断的效率、客观性和一致性。这项研究的一个关键目标是创建一个准确的自动化系统来诊断乳腺癌,可以在当前的临床环境中发挥作用。在这项工作中,我们提出了一种将不对称分析作为基本选择和决策级融合的乳腺癌识别算法。利用在数据库上预训练的卷积神经网络(CNN)模型提取的局部核特征融合构成图像特征表示。该数据集可供公众使用,并通过运行25个随机试验来评估结果,训练和测试之间的分割率为80%-20%。总的来说,建议的框架是86%。所提出的框架被证明优于许多当前的方法,并提供与最先进的技术相当的结果,而不需要大量的计算资源。通过使用这种基于迁移学习的定性方法,从组织学图片中检测乳腺癌可能会得到很大的帮助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Breast Cancer Detection Using Deep Learning and Feature Decision Level Fusion
Among women, breast cancer has a high incidence and high fatality rate. Due to a lack of early detection facilities and barriers to accessing technological improvements in battling this illness, mortality rates are disproportionately greater in underdeveloped countries. Biopsies done by trained pathologists are the only certain approach to diagnosing cancer. With the use of computer-aided diagnostic algorithms, pathologists may improve their efficiency, objectivity, and consistency in making diagnoses. A key goal of this research is to create an accurate automated system for diagnosing breast cancer that can function in the current clinical setting. In this work, we offer an algorithm for the identification of breast cancer that uses asymmetric analysis as the basic choice and decision-level fusion. Fusion of local nuclei features extracted using convolutional neural network (CNN) models pre-trained on the database constitutes the picture feature representation. The dataset is accessible for public use, and the results are evaluated by running 25 random trials with an 80%-20% split between train and test. Overall, the suggested framework was 86%. The proposed framework is shown to outperform numerous current methods and to provide results on par with the state-of-the-art techniques without requiring extensive computing resources. Breast cancer detection from histological pictures may be greatly aided by the use of this qualitative approach based on transfer learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信