{"title":"科学应用混合云中的自动缩放方法","authors":"Younsun Ahn, Jieun Choi, Sol Jeong, Yoonhee Kim","doi":"10.1109/APNOMS.2014.6996527","DOIUrl":null,"url":null,"abstract":"Scientists can ease to conduct large-scale scientific computational experiments over cloud environment according to an appearance of Science Clouds. Cloud computing enables applications to apply on-demand and scalable resources dynamically. It is necessary for Many Task Computing (MTC) to offer high performance resources in a long phase and certificate stable executions of applications even dramatic changes of vital status of physical resources. Auto-scaling on virtual machines provides integrated and efficient utilization of cloud resources. VM Auto-scaling schemes have been actively studied as effective resource management in order to utilize large-scale data center in a good shape. However, most of the existing auto-scaling methods just simply support CPU utilization and data transfer latency. It is needed to consider execution deadline or characteristics of an application. We propose an auto-scaling method, guaranteeing the execution of an application within deadline. It can handle two types of job patterns; Bag-of-Tasks jobs or workflow jobs. We simulate a variable index computation application in hybrid cloud environment. The results of the simulation show the method can dynamically allocate resources considering deadline.","PeriodicalId":269952,"journal":{"name":"The 16th Asia-Pacific Network Operations and Management Symposium","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Auto-scaling method in hybrid cloud for scientific applications\",\"authors\":\"Younsun Ahn, Jieun Choi, Sol Jeong, Yoonhee Kim\",\"doi\":\"10.1109/APNOMS.2014.6996527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Scientists can ease to conduct large-scale scientific computational experiments over cloud environment according to an appearance of Science Clouds. Cloud computing enables applications to apply on-demand and scalable resources dynamically. It is necessary for Many Task Computing (MTC) to offer high performance resources in a long phase and certificate stable executions of applications even dramatic changes of vital status of physical resources. Auto-scaling on virtual machines provides integrated and efficient utilization of cloud resources. VM Auto-scaling schemes have been actively studied as effective resource management in order to utilize large-scale data center in a good shape. However, most of the existing auto-scaling methods just simply support CPU utilization and data transfer latency. It is needed to consider execution deadline or characteristics of an application. We propose an auto-scaling method, guaranteeing the execution of an application within deadline. It can handle two types of job patterns; Bag-of-Tasks jobs or workflow jobs. We simulate a variable index computation application in hybrid cloud environment. The results of the simulation show the method can dynamically allocate resources considering deadline.\",\"PeriodicalId\":269952,\"journal\":{\"name\":\"The 16th Asia-Pacific Network Operations and Management Symposium\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 16th Asia-Pacific Network Operations and Management Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APNOMS.2014.6996527\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 16th Asia-Pacific Network Operations and Management Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APNOMS.2014.6996527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Auto-scaling method in hybrid cloud for scientific applications
Scientists can ease to conduct large-scale scientific computational experiments over cloud environment according to an appearance of Science Clouds. Cloud computing enables applications to apply on-demand and scalable resources dynamically. It is necessary for Many Task Computing (MTC) to offer high performance resources in a long phase and certificate stable executions of applications even dramatic changes of vital status of physical resources. Auto-scaling on virtual machines provides integrated and efficient utilization of cloud resources. VM Auto-scaling schemes have been actively studied as effective resource management in order to utilize large-scale data center in a good shape. However, most of the existing auto-scaling methods just simply support CPU utilization and data transfer latency. It is needed to consider execution deadline or characteristics of an application. We propose an auto-scaling method, guaranteeing the execution of an application within deadline. It can handle two types of job patterns; Bag-of-Tasks jobs or workflow jobs. We simulate a variable index computation application in hybrid cloud environment. The results of the simulation show the method can dynamically allocate resources considering deadline.