对称特征值问题特征向量计算的新算法

A. Haidar, P. Luszczek, J. Dongarra
{"title":"对称特征值问题特征向量计算的新算法","authors":"A. Haidar, P. Luszczek, J. Dongarra","doi":"10.1109/IPDPSW.2014.130","DOIUrl":null,"url":null,"abstract":"We describe a design and implementation of a multi-stage algorithm for computing eigenvectors of a dense symmetric matrix. We show that reformulating the existing algorithms is beneficial in terms of performance even if that doubles the computational complexity. Through detailed analysis, we show that the effect of the increase in the asymptotic operation count may be compensated by a much improved performance rate. Our performance results indicate that using our approach achieves very good speedup and scalability even when directly compared with the existing state-of-the-art software.","PeriodicalId":153864,"journal":{"name":"2014 IEEE International Parallel & Distributed Processing Symposium Workshops","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"New Algorithm for Computing Eigenvectors of the Symmetric Eigenvalue Problem\",\"authors\":\"A. Haidar, P. Luszczek, J. Dongarra\",\"doi\":\"10.1109/IPDPSW.2014.130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a design and implementation of a multi-stage algorithm for computing eigenvectors of a dense symmetric matrix. We show that reformulating the existing algorithms is beneficial in terms of performance even if that doubles the computational complexity. Through detailed analysis, we show that the effect of the increase in the asymptotic operation count may be compensated by a much improved performance rate. Our performance results indicate that using our approach achieves very good speedup and scalability even when directly compared with the existing state-of-the-art software.\",\"PeriodicalId\":153864,\"journal\":{\"name\":\"2014 IEEE International Parallel & Distributed Processing Symposium Workshops\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Parallel & Distributed Processing Symposium Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPSW.2014.130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Parallel & Distributed Processing Symposium Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW.2014.130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

我们描述了一种计算密集对称矩阵特征向量的多阶段算法的设计和实现。我们表明,即使计算复杂度翻倍,重新制定现有算法在性能方面也是有益的。通过详细的分析,我们表明渐近运算次数增加的影响可以通过大大提高的性能来补偿。我们的性能结果表明,即使与现有的最先进的软件直接比较,使用我们的方法也可以获得非常好的加速和可伸缩性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New Algorithm for Computing Eigenvectors of the Symmetric Eigenvalue Problem
We describe a design and implementation of a multi-stage algorithm for computing eigenvectors of a dense symmetric matrix. We show that reformulating the existing algorithms is beneficial in terms of performance even if that doubles the computational complexity. Through detailed analysis, we show that the effect of the increase in the asymptotic operation count may be compensated by a much improved performance rate. Our performance results indicate that using our approach achieves very good speedup and scalability even when directly compared with the existing state-of-the-art software.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信