自适应信号表示:多少是太多?

D. Donoho
{"title":"自适应信号表示:多少是太多?","authors":"D. Donoho","doi":"10.1109/WITS.1994.513884","DOIUrl":null,"url":null,"abstract":"Adaptive signal representations in overcomplete libraries of waveforms have been very popular. One naturally expects that in searching through a large number of signal representations for noisy data, one is at risk of identifying apparent structure in the data which turns out to be spurious, noise-induced artifacts. We show how to use penalties based on the logarithm of library complexity to temper the search, preventing such spurious structure, and giving near-ideal behavior.","PeriodicalId":423518,"journal":{"name":"Proceedings of 1994 Workshop on Information Theory and Statistics","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Adaptive signal representations: How much is too much?\",\"authors\":\"D. Donoho\",\"doi\":\"10.1109/WITS.1994.513884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Adaptive signal representations in overcomplete libraries of waveforms have been very popular. One naturally expects that in searching through a large number of signal representations for noisy data, one is at risk of identifying apparent structure in the data which turns out to be spurious, noise-induced artifacts. We show how to use penalties based on the logarithm of library complexity to temper the search, preventing such spurious structure, and giving near-ideal behavior.\",\"PeriodicalId\":423518,\"journal\":{\"name\":\"Proceedings of 1994 Workshop on Information Theory and Statistics\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1994 Workshop on Information Theory and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WITS.1994.513884\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 Workshop on Information Theory and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WITS.1994.513884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在过完备的波形库中自适应信号表示已经非常流行。人们自然会期望,在搜索大量噪声数据的信号表示时,人们可能会在数据中识别出明显的结构,而这些结构最终被证明是虚假的、噪声诱发的伪像。我们将展示如何使用基于库复杂性对数的惩罚来缓和搜索,防止此类虚假结构,并提供接近理想的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive signal representations: How much is too much?
Adaptive signal representations in overcomplete libraries of waveforms have been very popular. One naturally expects that in searching through a large number of signal representations for noisy data, one is at risk of identifying apparent structure in the data which turns out to be spurious, noise-induced artifacts. We show how to use penalties based on the logarithm of library complexity to temper the search, preventing such spurious structure, and giving near-ideal behavior.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信