使用深度学习特征的乳房x线照片分类

S. J. S. Gardezi, M. Awais, I. Faye, F. Mériaudeau
{"title":"使用深度学习特征的乳房x线照片分类","authors":"S. J. S. Gardezi, M. Awais, I. Faye, F. Mériaudeau","doi":"10.1109/ICSIPA.2017.8120660","DOIUrl":null,"url":null,"abstract":"This paper presents a method for classification of normal and abnormal tissues in mammograms using a deep learning approach. VGG-16 CNN deep learning architecture with convolutional filter of (3×3) is implemented on mammograms ROIs from the IRMA dataset. The deep feature matrix is computed from first fully connected layer. The results are evaluated using 10 fold cross validation on SVM, binary trees, simple logistics and KNN (with k=1, 3, 5) classifiers. The method produced 100% classification accuracies with AUC 1.0.","PeriodicalId":268112,"journal":{"name":"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Mammogram classification using deep learning features\",\"authors\":\"S. J. S. Gardezi, M. Awais, I. Faye, F. Mériaudeau\",\"doi\":\"10.1109/ICSIPA.2017.8120660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a method for classification of normal and abnormal tissues in mammograms using a deep learning approach. VGG-16 CNN deep learning architecture with convolutional filter of (3×3) is implemented on mammograms ROIs from the IRMA dataset. The deep feature matrix is computed from first fully connected layer. The results are evaluated using 10 fold cross validation on SVM, binary trees, simple logistics and KNN (with k=1, 3, 5) classifiers. The method produced 100% classification accuracies with AUC 1.0.\",\"PeriodicalId\":268112,\"journal\":{\"name\":\"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)\",\"volume\":\"97 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSIPA.2017.8120660\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIPA.2017.8120660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

摘要

本文提出了一种使用深度学习方法对乳房x线照片中的正常和异常组织进行分类的方法。在IRMA数据集的乳房x线照片roi上实现了带有卷积滤波器(3×3)的VGG-16 CNN深度学习架构。深度特征矩阵从第一个全连通层开始计算。使用支持向量机、二叉树、简单物流和KNN (k= 1,3,5)分类器对结果进行10次交叉验证。该方法的分类准确率为100%,AUC为1.0。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mammogram classification using deep learning features
This paper presents a method for classification of normal and abnormal tissues in mammograms using a deep learning approach. VGG-16 CNN deep learning architecture with convolutional filter of (3×3) is implemented on mammograms ROIs from the IRMA dataset. The deep feature matrix is computed from first fully connected layer. The results are evaluated using 10 fold cross validation on SVM, binary trees, simple logistics and KNN (with k=1, 3, 5) classifiers. The method produced 100% classification accuracies with AUC 1.0.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信