基于排名的商业信息处理:应用于商业解决方案和电子商务系统

Mao Chen, J. Sairamesh
{"title":"基于排名的商业信息处理:应用于商业解决方案和电子商务系统","authors":"Mao Chen, J. Sairamesh","doi":"10.1109/ICECT.2005.74","DOIUrl":null,"url":null,"abstract":"Extracting crucial information in high volume business data efficiently are critical for enterprises to make timely business decisions and adapt accordingly. This paper proposes a novel ranking-based system that applies knowledge models and utility functions. In a case study for monitoring and analyzing automotive failures in aftermarket services, we shed a light on our ranking mechanism that combines objective business metrics and \"subjective\" domain knowledge. Our experiments using real-world data demonstrate that our methodology is capable of capturing macro view about business performance issues from a small but important fraction of information.","PeriodicalId":312957,"journal":{"name":"Seventh IEEE International Conference on E-Commerce Technology (CEC'05)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Ranking-based business information processing: applications to business solutions and eCommerce systems\",\"authors\":\"Mao Chen, J. Sairamesh\",\"doi\":\"10.1109/ICECT.2005.74\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extracting crucial information in high volume business data efficiently are critical for enterprises to make timely business decisions and adapt accordingly. This paper proposes a novel ranking-based system that applies knowledge models and utility functions. In a case study for monitoring and analyzing automotive failures in aftermarket services, we shed a light on our ranking mechanism that combines objective business metrics and \\\"subjective\\\" domain knowledge. Our experiments using real-world data demonstrate that our methodology is capable of capturing macro view about business performance issues from a small but important fraction of information.\",\"PeriodicalId\":312957,\"journal\":{\"name\":\"Seventh IEEE International Conference on E-Commerce Technology (CEC'05)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seventh IEEE International Conference on E-Commerce Technology (CEC'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECT.2005.74\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seventh IEEE International Conference on E-Commerce Technology (CEC'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECT.2005.74","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

高效地从海量业务数据中提取关键信息,是企业及时做出业务决策并进行相应调整的关键。本文提出了一种应用知识模型和效用函数的基于排序的系统。在一个监测和分析售后市场服务中的汽车故障的案例研究中,我们阐明了结合客观业务指标和“主观”领域知识的排名机制。我们使用真实数据进行的实验表明,我们的方法能够从一小部分但重要的信息中获取有关业务绩效问题的宏观视图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ranking-based business information processing: applications to business solutions and eCommerce systems
Extracting crucial information in high volume business data efficiently are critical for enterprises to make timely business decisions and adapt accordingly. This paper proposes a novel ranking-based system that applies knowledge models and utility functions. In a case study for monitoring and analyzing automotive failures in aftermarket services, we shed a light on our ranking mechanism that combines objective business metrics and "subjective" domain knowledge. Our experiments using real-world data demonstrate that our methodology is capable of capturing macro view about business performance issues from a small but important fraction of information.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信