跨域时尚图像检索

B. Gajic, R. Baldrich
{"title":"跨域时尚图像检索","authors":"B. Gajic, R. Baldrich","doi":"10.1109/CVPRW.2018.00243","DOIUrl":null,"url":null,"abstract":"Cross domain image retrieval is a challenging task that implies matching images from one domain to their pairs from another domain. In this paper we focus on fashion image retrieval, which involves matching an image of a fashion item taken by users, to the images of the same item taken in controlled condition, usually by professional photographer. When facing this problem, we have different products in train and test time, and we use triplet loss to train the network. We stress the importance of proper training of simple architecture, as well as adapting general models to the specific task.","PeriodicalId":150600,"journal":{"name":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"Cross-Domain Fashion Image Retrieval\",\"authors\":\"B. Gajic, R. Baldrich\",\"doi\":\"10.1109/CVPRW.2018.00243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cross domain image retrieval is a challenging task that implies matching images from one domain to their pairs from another domain. In this paper we focus on fashion image retrieval, which involves matching an image of a fashion item taken by users, to the images of the same item taken in controlled condition, usually by professional photographer. When facing this problem, we have different products in train and test time, and we use triplet loss to train the network. We stress the importance of proper training of simple architecture, as well as adapting general models to the specific task.\",\"PeriodicalId\":150600,\"journal\":{\"name\":\"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"volume\":\"114 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPRW.2018.00243\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2018.00243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

摘要

跨域图像检索是一项具有挑战性的任务,需要将一个域的图像与另一个域的图像对进行匹配。在本文中,我们关注时尚图像检索,它涉及到将用户拍摄的时尚物品的图像与在受控条件下拍摄的相同物品的图像进行匹配,通常由专业摄影师拍摄。面对这个问题,我们在训练和测试时间上有不同的产品,我们使用三重损失来训练网络。我们强调对简单建筑进行适当培训的重要性,以及使一般模型适应具体任务的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cross-Domain Fashion Image Retrieval
Cross domain image retrieval is a challenging task that implies matching images from one domain to their pairs from another domain. In this paper we focus on fashion image retrieval, which involves matching an image of a fashion item taken by users, to the images of the same item taken in controlled condition, usually by professional photographer. When facing this problem, we have different products in train and test time, and we use triplet loss to train the network. We stress the importance of proper training of simple architecture, as well as adapting general models to the specific task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信