一种用于多传感器数据融合的混合卡尔曼滤波-模糊逻辑结构

P. J. Escamilla-Ambrosio, N. Mort
{"title":"一种用于多传感器数据融合的混合卡尔曼滤波-模糊逻辑结构","authors":"P. J. Escamilla-Ambrosio, N. Mort","doi":"10.1109/ISIC.2001.971537","DOIUrl":null,"url":null,"abstract":"A novel hybrid multi-sensor data fusion (MSDF) architecture integrating Kalman filtering and fuzzy logic techniques is explored. The objective of the hybrid MSDF architecture is to obtain fused measurement data that determines the parameter being measured as precisely as possible. To reach this objective, first each measurement coming from each sensor is fed to a fuzzy-adaptive Kalman filter (FKF), thus there are n sensors and n FKFs working in parallel. Next, a fuzzy logic observer (FLO) monitors the performance of each FKF. The FLO assigns a degree of confidence, a number on the interval [0, 1], to each one of the FKFs output. The degree of confidence indicates to what level each FKF output reflects the true value of the measurement. Finally, a defuzzificator obtains the fused estimated measurement based on the confidence values. To demonstrate the effectiveness and accuracy of this new hybrid MSDF architecture, an example with four noisy sensors is outlined. Different defuzzification methods are explored to select the best one for this particular application. The results show very good performance.","PeriodicalId":367430,"journal":{"name":"Proceeding of the 2001 IEEE International Symposium on Intelligent Control (ISIC '01) (Cat. No.01CH37206)","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"52","resultStr":"{\"title\":\"A hybrid Kalman filter-fuzzy logic architecture for multisensor data fusion\",\"authors\":\"P. J. Escamilla-Ambrosio, N. Mort\",\"doi\":\"10.1109/ISIC.2001.971537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel hybrid multi-sensor data fusion (MSDF) architecture integrating Kalman filtering and fuzzy logic techniques is explored. The objective of the hybrid MSDF architecture is to obtain fused measurement data that determines the parameter being measured as precisely as possible. To reach this objective, first each measurement coming from each sensor is fed to a fuzzy-adaptive Kalman filter (FKF), thus there are n sensors and n FKFs working in parallel. Next, a fuzzy logic observer (FLO) monitors the performance of each FKF. The FLO assigns a degree of confidence, a number on the interval [0, 1], to each one of the FKFs output. The degree of confidence indicates to what level each FKF output reflects the true value of the measurement. Finally, a defuzzificator obtains the fused estimated measurement based on the confidence values. To demonstrate the effectiveness and accuracy of this new hybrid MSDF architecture, an example with four noisy sensors is outlined. Different defuzzification methods are explored to select the best one for this particular application. The results show very good performance.\",\"PeriodicalId\":367430,\"journal\":{\"name\":\"Proceeding of the 2001 IEEE International Symposium on Intelligent Control (ISIC '01) (Cat. No.01CH37206)\",\"volume\":\"114 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"52\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceeding of the 2001 IEEE International Symposium on Intelligent Control (ISIC '01) (Cat. No.01CH37206)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIC.2001.971537\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceeding of the 2001 IEEE International Symposium on Intelligent Control (ISIC '01) (Cat. No.01CH37206)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.2001.971537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 52

摘要

提出了一种融合卡尔曼滤波和模糊逻辑技术的混合多传感器数据融合(MSDF)架构。混合MSDF体系结构的目标是获得融合的测量数据,以尽可能精确地确定被测量的参数。为了达到这一目标,首先,来自每个传感器的每个测量都被馈送到一个模糊自适应卡尔曼滤波器(FKF),因此有n个传感器和n个FKF并行工作。接下来,一个模糊逻辑观测器(FLO)监视每个FKF的性能。FLO为每个FKFs输出分配一个置信度,即区间[0,1]上的一个数字。置信度表示每个FKF输出在何种程度上反映了测量的真实值。最后,利用消模糊器根据置信值得到融合估计测量值。为了证明这种新型混合MSDF架构的有效性和准确性,给出了一个带有四个噪声传感器的示例。探索了不同的去模糊化方法,以选择适合此特定应用的最佳方法。结果表明,该方法具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A hybrid Kalman filter-fuzzy logic architecture for multisensor data fusion
A novel hybrid multi-sensor data fusion (MSDF) architecture integrating Kalman filtering and fuzzy logic techniques is explored. The objective of the hybrid MSDF architecture is to obtain fused measurement data that determines the parameter being measured as precisely as possible. To reach this objective, first each measurement coming from each sensor is fed to a fuzzy-adaptive Kalman filter (FKF), thus there are n sensors and n FKFs working in parallel. Next, a fuzzy logic observer (FLO) monitors the performance of each FKF. The FLO assigns a degree of confidence, a number on the interval [0, 1], to each one of the FKFs output. The degree of confidence indicates to what level each FKF output reflects the true value of the measurement. Finally, a defuzzificator obtains the fused estimated measurement based on the confidence values. To demonstrate the effectiveness and accuracy of this new hybrid MSDF architecture, an example with four noisy sensors is outlined. Different defuzzification methods are explored to select the best one for this particular application. The results show very good performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信