构造具有多项式子词复杂度的无限二进制词的注释

F. Blanchet-Sadri, Bob Chen, Sinziana Munteanu
{"title":"构造具有多项式子词复杂度的无限二进制词的注释","authors":"F. Blanchet-Sadri, Bob Chen, Sinziana Munteanu","doi":"10.1051/ita/2013033","DOIUrl":null,"url":null,"abstract":"Most of the constructions of infinite words having polynomial subword complexity are quite complicated, e.g. , sequences of Toeplitz, sequences defined by billiards in the cube, etc. In this paper, we describe a simple method for constructing infinite words w over a binary alphabet  { a,b  }  with polynomial subword complexity p w . Assuming w contains an infinite number of a ’s, our method is based on the gap function which gives the distances between consecutive b ’s. It is known that if the gap function is injective, we can obtain at most quadratic subword complexity, and if the gap function is blockwise injective, we can obtain at most cubic subword complexity. Here, we construct infinite binary words w such that p w (n ) = Θ (n β ) for any real number β  > 1.","PeriodicalId":438841,"journal":{"name":"RAIRO Theor. Informatics Appl.","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A note on constructing infinite binary words with polynomial subword complexity\",\"authors\":\"F. Blanchet-Sadri, Bob Chen, Sinziana Munteanu\",\"doi\":\"10.1051/ita/2013033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most of the constructions of infinite words having polynomial subword complexity are quite complicated, e.g. , sequences of Toeplitz, sequences defined by billiards in the cube, etc. In this paper, we describe a simple method for constructing infinite words w over a binary alphabet  { a,b  }  with polynomial subword complexity p w . Assuming w contains an infinite number of a ’s, our method is based on the gap function which gives the distances between consecutive b ’s. It is known that if the gap function is injective, we can obtain at most quadratic subword complexity, and if the gap function is blockwise injective, we can obtain at most cubic subword complexity. Here, we construct infinite binary words w such that p w (n ) = Θ (n β ) for any real number β  > 1.\",\"PeriodicalId\":438841,\"journal\":{\"name\":\"RAIRO Theor. Informatics Appl.\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RAIRO Theor. Informatics Appl.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/ita/2013033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RAIRO Theor. Informatics Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/ita/2013033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大多数具有多项式子词复杂度的无限词的构造都是相当复杂的,例如Toeplitz序列、立方体台球定义的序列等。在本文中,我们描述了在一个多项式子词复杂度p w的二进制字母表{a,b}上构造无限词w的一种简单方法。假设w包含无限个a,我们的方法基于给出连续b之间距离的间隙函数。已知,如果间隙函数是内射的,我们最多可以获得二次子字复杂度,如果间隙函数是块内射的,我们最多可以获得三次子字复杂度。在这里,我们构造了无限个二进制词w,使得对于任意实数β > 1, p w (n) = Θ (n β)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A note on constructing infinite binary words with polynomial subword complexity
Most of the constructions of infinite words having polynomial subword complexity are quite complicated, e.g. , sequences of Toeplitz, sequences defined by billiards in the cube, etc. In this paper, we describe a simple method for constructing infinite words w over a binary alphabet  { a,b  }  with polynomial subword complexity p w . Assuming w contains an infinite number of a ’s, our method is based on the gap function which gives the distances between consecutive b ’s. It is known that if the gap function is injective, we can obtain at most quadratic subword complexity, and if the gap function is blockwise injective, we can obtain at most cubic subword complexity. Here, we construct infinite binary words w such that p w (n ) = Θ (n β ) for any real number β  > 1.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信