预处理阶段改进线性回归的颜色校正增强番茄聚类评价

Y. A. Sari, Sigit Adinugroho, R. V. Ginardi, N. Suciati
{"title":"预处理阶段改进线性回归的颜色校正增强番茄聚类评价","authors":"Y. A. Sari, Sigit Adinugroho, R. V. Ginardi, N. Suciati","doi":"10.1109/ICACSIS.2016.7872731","DOIUrl":null,"url":null,"abstract":"Color inconsistency poses many difficulties when capturing the same object using different image capture devices. Color is one of main parts in image preprocessing and therefore color correction is needed to calibrate images in order to produce consistent color values. In this paper, we propose a new color correction method by employing combined linear regression with stepwise model to enhance the quality of tomatoes ripeness clustering. Macbeth ColorChecker is needed as a reference image while a test image to be corrected is captured by an Android smartphone camera. There are 12 color levels to be compared between reference and test image. However, only a number of color levels are selected by k-means clustering. The selected color levels are utilized to build a linear regression algorithm with stepwise model. The result confirms that color correction and color constancy increase the clustering performance by 10% up to 40% for all possible configurations.","PeriodicalId":267924,"journal":{"name":"2016 International Conference on Advanced Computer Science and Information Systems (ICACSIS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Enhancing tomato clustering evaluation using color correction with improved linear regression in preprocessing phase\",\"authors\":\"Y. A. Sari, Sigit Adinugroho, R. V. Ginardi, N. Suciati\",\"doi\":\"10.1109/ICACSIS.2016.7872731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Color inconsistency poses many difficulties when capturing the same object using different image capture devices. Color is one of main parts in image preprocessing and therefore color correction is needed to calibrate images in order to produce consistent color values. In this paper, we propose a new color correction method by employing combined linear regression with stepwise model to enhance the quality of tomatoes ripeness clustering. Macbeth ColorChecker is needed as a reference image while a test image to be corrected is captured by an Android smartphone camera. There are 12 color levels to be compared between reference and test image. However, only a number of color levels are selected by k-means clustering. The selected color levels are utilized to build a linear regression algorithm with stepwise model. The result confirms that color correction and color constancy increase the clustering performance by 10% up to 40% for all possible configurations.\",\"PeriodicalId\":267924,\"journal\":{\"name\":\"2016 International Conference on Advanced Computer Science and Information Systems (ICACSIS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Advanced Computer Science and Information Systems (ICACSIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACSIS.2016.7872731\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Advanced Computer Science and Information Systems (ICACSIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACSIS.2016.7872731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

当使用不同的图像捕获设备捕获同一物体时,颜色不一致会带来许多困难。色彩是图像预处理的主要内容之一,为了得到一致的色彩值,需要对图像进行色彩校正。本文提出了一种采用线性回归与逐步模型相结合的颜色校正方法,以提高番茄成熟度聚类的质量。Macbeth ColorChecker需要作为参考图像,而需要校正的测试图像是由Android智能手机相机捕获的。参考图像和测试图像之间有12个颜色级别进行比较。然而,k-means聚类只能选择一定数量的颜色级别。利用所选择的颜色等级建立一个逐步回归模型的线性回归算法。结果证实,对于所有可能的配置,颜色校正和颜色常数使聚类性能提高了10%到40%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing tomato clustering evaluation using color correction with improved linear regression in preprocessing phase
Color inconsistency poses many difficulties when capturing the same object using different image capture devices. Color is one of main parts in image preprocessing and therefore color correction is needed to calibrate images in order to produce consistent color values. In this paper, we propose a new color correction method by employing combined linear regression with stepwise model to enhance the quality of tomatoes ripeness clustering. Macbeth ColorChecker is needed as a reference image while a test image to be corrected is captured by an Android smartphone camera. There are 12 color levels to be compared between reference and test image. However, only a number of color levels are selected by k-means clustering. The selected color levels are utilized to build a linear regression algorithm with stepwise model. The result confirms that color correction and color constancy increase the clustering performance by 10% up to 40% for all possible configurations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信