Nordsieck形式的二阶导数一般线性方法

R. I. Okuonghae, M. Ikhile
{"title":"Nordsieck形式的二阶导数一般线性方法","authors":"R. I. Okuonghae, M. Ikhile","doi":"10.33993/jnaat481-1140","DOIUrl":null,"url":null,"abstract":"This paper considers the construction of second derivative general linear methods (SD-GLM) from hybrid LMM and their transformation to NordsieckGLM. How the Runge-Kutta starters for the methods can be derived are given. The representation of the methods in Nordsieck form has the advantage of easy implementation in variable stepsize. \n ","PeriodicalId":287022,"journal":{"name":"Journal of Numerical Analysis and Approximation Theory","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Second derivative General Linear Method in Nordsieck form\",\"authors\":\"R. I. Okuonghae, M. Ikhile\",\"doi\":\"10.33993/jnaat481-1140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers the construction of second derivative general linear methods (SD-GLM) from hybrid LMM and their transformation to NordsieckGLM. How the Runge-Kutta starters for the methods can be derived are given. The representation of the methods in Nordsieck form has the advantage of easy implementation in variable stepsize. \\n \",\"PeriodicalId\":287022,\"journal\":{\"name\":\"Journal of Numerical Analysis and Approximation Theory\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Numerical Analysis and Approximation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33993/jnaat481-1140\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical Analysis and Approximation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33993/jnaat481-1140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了由混合LMM构造二阶导数一般线性方法(SD-GLM)及其向NordsieckGLM的转化。给出了该方法的龙格-库塔启动子的推导方法。用Nordsieck形式表示这些方法具有在变步长情况下易于实现的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Second derivative General Linear Method in Nordsieck form
This paper considers the construction of second derivative general linear methods (SD-GLM) from hybrid LMM and their transformation to NordsieckGLM. How the Runge-Kutta starters for the methods can be derived are given. The representation of the methods in Nordsieck form has the advantage of easy implementation in variable stepsize.  
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信