{"title":"循证政策在世界各国国家教育体系中的节奏性应用","authors":"Alexander W. Wiseman, P. M. Davidson","doi":"10.1108/S1479-367920180000035001","DOIUrl":null,"url":null,"abstract":"Abstract \nThe shift from data-informed to data-driven educational policymaking is conceptually framed by institutional and transhumanist perspectives. Examples of the shift to large-scale quantitative data driving educational decision-making suggest that data-driven educational policy will not adjust for context to the degree as done by the data-informed or data-based policymaking. Instead, the algorithmization of educational decision-making is both increasingly realizable and necessary in light of the overwhelmingly big data on education produced annually around the world. Evidence suggests that the isomorphic shift from localized data and individual decision-making about education to large-scale assessment data has changed the nature of educational decision-making and national educational policy. Big data are increasingly legitimized in educational policy communities at national and international levels, which means that algorithms are assumed to be the best way to analyze and make decisions about large volumes of complex data. There is a conceptual concern, however, that decontextualized or de-humanized educational policies may have the effect of increasing student achievement, but not necessarily the translation of knowledge into economically, socially, or politically productive behavior.","PeriodicalId":130720,"journal":{"name":"Cross-nationally Comparative, Evidence-based Educational Policymaking and Reform","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The Rhythmic Application of Evidence-Based Policy in National Educational Systems Worldwide\",\"authors\":\"Alexander W. Wiseman, P. M. Davidson\",\"doi\":\"10.1108/S1479-367920180000035001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract \\nThe shift from data-informed to data-driven educational policymaking is conceptually framed by institutional and transhumanist perspectives. Examples of the shift to large-scale quantitative data driving educational decision-making suggest that data-driven educational policy will not adjust for context to the degree as done by the data-informed or data-based policymaking. Instead, the algorithmization of educational decision-making is both increasingly realizable and necessary in light of the overwhelmingly big data on education produced annually around the world. Evidence suggests that the isomorphic shift from localized data and individual decision-making about education to large-scale assessment data has changed the nature of educational decision-making and national educational policy. Big data are increasingly legitimized in educational policy communities at national and international levels, which means that algorithms are assumed to be the best way to analyze and make decisions about large volumes of complex data. There is a conceptual concern, however, that decontextualized or de-humanized educational policies may have the effect of increasing student achievement, but not necessarily the translation of knowledge into economically, socially, or politically productive behavior.\",\"PeriodicalId\":130720,\"journal\":{\"name\":\"Cross-nationally Comparative, Evidence-based Educational Policymaking and Reform\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cross-nationally Comparative, Evidence-based Educational Policymaking and Reform\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/S1479-367920180000035001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cross-nationally Comparative, Evidence-based Educational Policymaking and Reform","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/S1479-367920180000035001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Rhythmic Application of Evidence-Based Policy in National Educational Systems Worldwide
Abstract
The shift from data-informed to data-driven educational policymaking is conceptually framed by institutional and transhumanist perspectives. Examples of the shift to large-scale quantitative data driving educational decision-making suggest that data-driven educational policy will not adjust for context to the degree as done by the data-informed or data-based policymaking. Instead, the algorithmization of educational decision-making is both increasingly realizable and necessary in light of the overwhelmingly big data on education produced annually around the world. Evidence suggests that the isomorphic shift from localized data and individual decision-making about education to large-scale assessment data has changed the nature of educational decision-making and national educational policy. Big data are increasingly legitimized in educational policy communities at national and international levels, which means that algorithms are assumed to be the best way to analyze and make decisions about large volumes of complex data. There is a conceptual concern, however, that decontextualized or de-humanized educational policies may have the effect of increasing student achievement, but not necessarily the translation of knowledge into economically, socially, or politically productive behavior.