{"title":"在线故障预测中故障注入生成的故障数据的代表性评估","authors":"Ivano Irrera, M. Vieira","doi":"10.1109/DSN-W.2015.24","DOIUrl":null,"url":null,"abstract":"Online Failure Prediction allows improving system dependability by foreseeing incoming failures at runtime, enabling mitigation actions to be taken in advance, though prediction systems' learning and assessing is hard due to the scarcity of failure data. Realistic software fault injection has been identified as a valid solution for addressing the scarcity of failure data, as injecting software faults (the most occurring on computer systems) increases the probability of a system to fail, hence allowing the collection of failure-related data in short time. Moreover, realistic injection permits the emulation of software faults likely to exist in the target system after its deployment. However, besides the representativeness of the software faults injected is recognized as a necessary condition for generating valid failure data, studies on the representativeness of generated failure-related data has still not been addressed. In this work we present a preliminary study towards the assessment the representativeness of failure-related data by using G-SWFIT realistic software fault injection technique. We here address the definition of concepts and metrics for the representativeness estimation and assessment.","PeriodicalId":202329,"journal":{"name":"2015 IEEE International Conference on Dependable Systems and Networks Workshops","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Towards Assessing Representativeness of Fault Injection-Generated Failure Data for Online Failure Prediction\",\"authors\":\"Ivano Irrera, M. Vieira\",\"doi\":\"10.1109/DSN-W.2015.24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Online Failure Prediction allows improving system dependability by foreseeing incoming failures at runtime, enabling mitigation actions to be taken in advance, though prediction systems' learning and assessing is hard due to the scarcity of failure data. Realistic software fault injection has been identified as a valid solution for addressing the scarcity of failure data, as injecting software faults (the most occurring on computer systems) increases the probability of a system to fail, hence allowing the collection of failure-related data in short time. Moreover, realistic injection permits the emulation of software faults likely to exist in the target system after its deployment. However, besides the representativeness of the software faults injected is recognized as a necessary condition for generating valid failure data, studies on the representativeness of generated failure-related data has still not been addressed. In this work we present a preliminary study towards the assessment the representativeness of failure-related data by using G-SWFIT realistic software fault injection technique. We here address the definition of concepts and metrics for the representativeness estimation and assessment.\",\"PeriodicalId\":202329,\"journal\":{\"name\":\"2015 IEEE International Conference on Dependable Systems and Networks Workshops\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Dependable Systems and Networks Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSN-W.2015.24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Dependable Systems and Networks Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSN-W.2015.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Towards Assessing Representativeness of Fault Injection-Generated Failure Data for Online Failure Prediction
Online Failure Prediction allows improving system dependability by foreseeing incoming failures at runtime, enabling mitigation actions to be taken in advance, though prediction systems' learning and assessing is hard due to the scarcity of failure data. Realistic software fault injection has been identified as a valid solution for addressing the scarcity of failure data, as injecting software faults (the most occurring on computer systems) increases the probability of a system to fail, hence allowing the collection of failure-related data in short time. Moreover, realistic injection permits the emulation of software faults likely to exist in the target system after its deployment. However, besides the representativeness of the software faults injected is recognized as a necessary condition for generating valid failure data, studies on the representativeness of generated failure-related data has still not been addressed. In this work we present a preliminary study towards the assessment the representativeness of failure-related data by using G-SWFIT realistic software fault injection technique. We here address the definition of concepts and metrics for the representativeness estimation and assessment.