确定性和随机并行比较排序算法的平均复杂度

N. Alon, Y. Azar
{"title":"确定性和随机并行比较排序算法的平均复杂度","authors":"N. Alon, Y. Azar","doi":"10.1137/0217074","DOIUrl":null,"url":null,"abstract":"In practice, the average time of (deterministic or randomized) sorting algorithms seems to be more relevant than the worst case time of deterministic algorithms. Still, the many known complexity bounds for parallel comparison sorting include no nontrivial lower bounds for the average time required to sort by comparisons n elements with p processors (via deterministic or randomized algorithms). We show that for p ≥ n this time is Θ (log n/log(1 + p/n)), (it is easy to show that for p ≤ n the time is Θ (n log n/p) = Θ (log n/(p/n)). Therefore even the average case behaviour of randomized algorithms is not more efficient than the worst case behaviour of deterministic ones.","PeriodicalId":153779,"journal":{"name":"28th Annual Symposium on Foundations of Computer Science (sfcs 1987)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1987-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":"{\"title\":\"The average complexity of deterministic and randomized parallel comparison sorting algorithms\",\"authors\":\"N. Alon, Y. Azar\",\"doi\":\"10.1137/0217074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In practice, the average time of (deterministic or randomized) sorting algorithms seems to be more relevant than the worst case time of deterministic algorithms. Still, the many known complexity bounds for parallel comparison sorting include no nontrivial lower bounds for the average time required to sort by comparisons n elements with p processors (via deterministic or randomized algorithms). We show that for p ≥ n this time is Θ (log n/log(1 + p/n)), (it is easy to show that for p ≤ n the time is Θ (n log n/p) = Θ (log n/(p/n)). Therefore even the average case behaviour of randomized algorithms is not more efficient than the worst case behaviour of deterministic ones.\",\"PeriodicalId\":153779,\"journal\":{\"name\":\"28th Annual Symposium on Foundations of Computer Science (sfcs 1987)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1987-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"28th Annual Symposium on Foundations of Computer Science (sfcs 1987)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/0217074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"28th Annual Symposium on Foundations of Computer Science (sfcs 1987)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/0217074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

摘要

在实践中,(确定性或随机)排序算法的平均时间似乎比确定性算法的最坏情况时间更相关。尽管如此,许多已知的并行比较排序的复杂度界限都不包括使用p个处理器(通过确定性或随机算法)比较n个元素进行排序所需的平均时间的非平凡下界。我们证明,对于p≥n,这个时间是Θ (log n/log(1 + p/n)),(很容易证明,对于p≤n,时间是Θ (n log n/p) = Θ (log n/(p/n))。因此,即使随机算法的平均情况行为也不会比确定性算法的最坏情况行为更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The average complexity of deterministic and randomized parallel comparison sorting algorithms
In practice, the average time of (deterministic or randomized) sorting algorithms seems to be more relevant than the worst case time of deterministic algorithms. Still, the many known complexity bounds for parallel comparison sorting include no nontrivial lower bounds for the average time required to sort by comparisons n elements with p processors (via deterministic or randomized algorithms). We show that for p ≥ n this time is Θ (log n/log(1 + p/n)), (it is easy to show that for p ≤ n the time is Θ (n log n/p) = Θ (log n/(p/n)). Therefore even the average case behaviour of randomized algorithms is not more efficient than the worst case behaviour of deterministic ones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信