Guanglei Wang, Bin Wang, Qinguo Gang, Suiping Zhou, Xiu-Ling Liu
{"title":"基于真实软组织特性的维管组织物理建模及应力分析优化","authors":"Guanglei Wang, Bin Wang, Qinguo Gang, Suiping Zhou, Xiu-Ling Liu","doi":"10.1145/2915926.2915934","DOIUrl":null,"url":null,"abstract":"We investigate a vascular deformation modeling method that can be used for percutaneous vascular interventional virtual surgery simulation. Triangle meshes are used to construct the virtual vascular tissues. The physical parameters of the meshes are obtained through biomechanics experiments with real porcine vascular under the small deformation. A new method is then proposed to establish the relation between the vascular elasticity modulus E and spring coefficient k for improving modeling accuracy. In addition, the influence scope analysis method for mass particle force optimization is used to improve simulation speed of tissue deformation. The propose method is compared with the finite element simulation, which shows that the proposed method is able to achieve the real time simulation for the virtual operations with a higher simulation accuracy.","PeriodicalId":409915,"journal":{"name":"Proceedings of the 29th International Conference on Computer Animation and Social Agents","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Physical Modeling of Vascular Tissues and Stress Analysis Optimization Based on Real Soft Tissue Characteristics\",\"authors\":\"Guanglei Wang, Bin Wang, Qinguo Gang, Suiping Zhou, Xiu-Ling Liu\",\"doi\":\"10.1145/2915926.2915934\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate a vascular deformation modeling method that can be used for percutaneous vascular interventional virtual surgery simulation. Triangle meshes are used to construct the virtual vascular tissues. The physical parameters of the meshes are obtained through biomechanics experiments with real porcine vascular under the small deformation. A new method is then proposed to establish the relation between the vascular elasticity modulus E and spring coefficient k for improving modeling accuracy. In addition, the influence scope analysis method for mass particle force optimization is used to improve simulation speed of tissue deformation. The propose method is compared with the finite element simulation, which shows that the proposed method is able to achieve the real time simulation for the virtual operations with a higher simulation accuracy.\",\"PeriodicalId\":409915,\"journal\":{\"name\":\"Proceedings of the 29th International Conference on Computer Animation and Social Agents\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 29th International Conference on Computer Animation and Social Agents\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2915926.2915934\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 29th International Conference on Computer Animation and Social Agents","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2915926.2915934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Physical Modeling of Vascular Tissues and Stress Analysis Optimization Based on Real Soft Tissue Characteristics
We investigate a vascular deformation modeling method that can be used for percutaneous vascular interventional virtual surgery simulation. Triangle meshes are used to construct the virtual vascular tissues. The physical parameters of the meshes are obtained through biomechanics experiments with real porcine vascular under the small deformation. A new method is then proposed to establish the relation between the vascular elasticity modulus E and spring coefficient k for improving modeling accuracy. In addition, the influence scope analysis method for mass particle force optimization is used to improve simulation speed of tissue deformation. The propose method is compared with the finite element simulation, which shows that the proposed method is able to achieve the real time simulation for the virtual operations with a higher simulation accuracy.