从评论中提取情感:基于词典的方法

S. L. Sonawane, P. Kulkarni
{"title":"从评论中提取情感:基于词典的方法","authors":"S. L. Sonawane, P. Kulkarni","doi":"10.1109/ICISIM.2017.8122144","DOIUrl":null,"url":null,"abstract":"In last decade, the field of information extraction and retrieval has increased exponentially. Sentiment analysis is a task to identify the polarity of given content. Extracting the useful content from the opinion sources becomes a challenging task. This paper used lexicon based approach for classifying a review document as positive, negative or neutral. This paper extracts the sentiments from customer reviews and SentiWordNet is used to assign the polarity to each sentiment. The classification of review document is predicted by sentimental score.","PeriodicalId":139000,"journal":{"name":"2017 1st International Conference on Intelligent Systems and Information Management (ICISIM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Extracting sentiments from reviews: A lexicon-based approach\",\"authors\":\"S. L. Sonawane, P. Kulkarni\",\"doi\":\"10.1109/ICISIM.2017.8122144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In last decade, the field of information extraction and retrieval has increased exponentially. Sentiment analysis is a task to identify the polarity of given content. Extracting the useful content from the opinion sources becomes a challenging task. This paper used lexicon based approach for classifying a review document as positive, negative or neutral. This paper extracts the sentiments from customer reviews and SentiWordNet is used to assign the polarity to each sentiment. The classification of review document is predicted by sentimental score.\",\"PeriodicalId\":139000,\"journal\":{\"name\":\"2017 1st International Conference on Intelligent Systems and Information Management (ICISIM)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 1st International Conference on Intelligent Systems and Information Management (ICISIM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICISIM.2017.8122144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 1st International Conference on Intelligent Systems and Information Management (ICISIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISIM.2017.8122144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

近十年来,信息提取与检索领域呈指数级增长。情感分析是一项识别给定内容的极性的任务。从意见源中提取有用的内容成为一项具有挑战性的任务。本文采用基于词汇的方法对评审文件进行正面、负面和中性的分类。本文从客户评论中提取情感,并使用SentiWordNet为每个情感分配极性。通过情感评分预测评审文件的分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extracting sentiments from reviews: A lexicon-based approach
In last decade, the field of information extraction and retrieval has increased exponentially. Sentiment analysis is a task to identify the polarity of given content. Extracting the useful content from the opinion sources becomes a challenging task. This paper used lexicon based approach for classifying a review document as positive, negative or neutral. This paper extracts the sentiments from customer reviews and SentiWordNet is used to assign the polarity to each sentiment. The classification of review document is predicted by sentimental score.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信