电动汽车充电站的优化布局:以约旦为例

Ahmad Bashaireh, Duaa Obeidat, Abdullah A. Almehizia, L. Shalalfeh
{"title":"电动汽车充电站的优化布局:以约旦为例","authors":"Ahmad Bashaireh, Duaa Obeidat, Abdullah A. Almehizia, L. Shalalfeh","doi":"10.1109/TPEC56611.2023.10078486","DOIUrl":null,"url":null,"abstract":"Several economic factors have contributed to an increased adoption of electric vehicles (EVs) in Jordan. Charging EVs constitutes a considerable electrical load, and hence, the rise in the number of EVs has a major effect on the electric distribution network. To address this, the charging infrastructure should be carefully studied, and an optimal implementation that minimizes the negative impact is crucial. In this paper, we develop a framework for optimal placement of EV charging stations using Particle Swarm optimization (PSO). The optimization problem maximizes the total EV charging capacity while minimizing transmission line and transformer loading and total power losses. This framework is implemented in MATLAB and DIgSILENT PowerFactory and applied to two cases in Jordan’s distribution network: an industrial area and a small town.","PeriodicalId":183284,"journal":{"name":"2023 IEEE Texas Power and Energy Conference (TPEC)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimal Placement of Electric Vehicle Charging Stations: A Case Study in Jordan\",\"authors\":\"Ahmad Bashaireh, Duaa Obeidat, Abdullah A. Almehizia, L. Shalalfeh\",\"doi\":\"10.1109/TPEC56611.2023.10078486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several economic factors have contributed to an increased adoption of electric vehicles (EVs) in Jordan. Charging EVs constitutes a considerable electrical load, and hence, the rise in the number of EVs has a major effect on the electric distribution network. To address this, the charging infrastructure should be carefully studied, and an optimal implementation that minimizes the negative impact is crucial. In this paper, we develop a framework for optimal placement of EV charging stations using Particle Swarm optimization (PSO). The optimization problem maximizes the total EV charging capacity while minimizing transmission line and transformer loading and total power losses. This framework is implemented in MATLAB and DIgSILENT PowerFactory and applied to two cases in Jordan’s distribution network: an industrial area and a small town.\",\"PeriodicalId\":183284,\"journal\":{\"name\":\"2023 IEEE Texas Power and Energy Conference (TPEC)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Texas Power and Energy Conference (TPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TPEC56611.2023.10078486\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Texas Power and Energy Conference (TPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TPEC56611.2023.10078486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

几个经济因素促成了约旦电动汽车(ev)的普及。电动汽车充电构成相当大的电力负荷,因此,电动汽车数量的增加对配电网产生重大影响。为了解决这个问题,应该仔细研究充电基础设施,并将负面影响最小化的最佳实施至关重要。在本文中,我们开发了一个基于粒子群优化(PSO)的电动汽车充电站优化布局框架。优化问题的目标是使电动汽车总充电容量最大化,同时使输电线路和变压器负荷最小,总功率损耗最小。该框架在MATLAB和DIgSILENT PowerFactory中实现,并应用于约旦的两个配电网案例:一个工业区和一个小镇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Placement of Electric Vehicle Charging Stations: A Case Study in Jordan
Several economic factors have contributed to an increased adoption of electric vehicles (EVs) in Jordan. Charging EVs constitutes a considerable electrical load, and hence, the rise in the number of EVs has a major effect on the electric distribution network. To address this, the charging infrastructure should be carefully studied, and an optimal implementation that minimizes the negative impact is crucial. In this paper, we develop a framework for optimal placement of EV charging stations using Particle Swarm optimization (PSO). The optimization problem maximizes the total EV charging capacity while minimizing transmission line and transformer loading and total power losses. This framework is implemented in MATLAB and DIgSILENT PowerFactory and applied to two cases in Jordan’s distribution network: an industrial area and a small town.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信