多无人机共享边缘基础设施的规划计算卸载

Giorgos Polychronis, S. Lalis
{"title":"多无人机共享边缘基础设施的规划计算卸载","authors":"Giorgos Polychronis, S. Lalis","doi":"10.1109/ICDCSW56584.2022.00063","DOIUrl":null,"url":null,"abstract":"Drones are used in a wide range of applications, which may involve computationally-demanding data processing tasks during the missions. While such heavy tasks can be offloaded to nearby edge-servers, this may not always be feasible due to capacity limitations and contention. In this case, it is important to have a fair allocation of server resources to drones. We propose a heuristic for this problem, and evaluate it though simulation experiments using realistic performance parameters. We show that the mission time can be greatly reduced, by up to 33% (16 min) compared to the default where drones perform all computations onboard, while evenly balancing the benefits of offloading among drones with different missions.","PeriodicalId":357138,"journal":{"name":"2022 IEEE 42nd International Conference on Distributed Computing Systems Workshops (ICDCSW)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Planning Computation Offloading on Shared Edge Infrastructure for Multiple Drones\",\"authors\":\"Giorgos Polychronis, S. Lalis\",\"doi\":\"10.1109/ICDCSW56584.2022.00063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Drones are used in a wide range of applications, which may involve computationally-demanding data processing tasks during the missions. While such heavy tasks can be offloaded to nearby edge-servers, this may not always be feasible due to capacity limitations and contention. In this case, it is important to have a fair allocation of server resources to drones. We propose a heuristic for this problem, and evaluate it though simulation experiments using realistic performance parameters. We show that the mission time can be greatly reduced, by up to 33% (16 min) compared to the default where drones perform all computations onboard, while evenly balancing the benefits of offloading among drones with different missions.\",\"PeriodicalId\":357138,\"journal\":{\"name\":\"2022 IEEE 42nd International Conference on Distributed Computing Systems Workshops (ICDCSW)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 42nd International Conference on Distributed Computing Systems Workshops (ICDCSW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDCSW56584.2022.00063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 42nd International Conference on Distributed Computing Systems Workshops (ICDCSW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCSW56584.2022.00063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

无人机的应用范围很广,在执行任务期间可能涉及对计算要求很高的数据处理任务。虽然这些繁重的任务可以卸载到附近的边缘服务器,但由于容量限制和争用,这可能并不总是可行的。在这种情况下,为无人机公平分配服务器资源是很重要的。我们提出了一种启发式算法,并通过使用真实性能参数的仿真实验对其进行了评价。我们表明,与无人机在机载执行所有计算的默认情况相比,任务时间可以大大减少,最多可减少33%(16分钟),同时在不同任务的无人机之间均衡地平衡卸载的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Planning Computation Offloading on Shared Edge Infrastructure for Multiple Drones
Drones are used in a wide range of applications, which may involve computationally-demanding data processing tasks during the missions. While such heavy tasks can be offloaded to nearby edge-servers, this may not always be feasible due to capacity limitations and contention. In this case, it is important to have a fair allocation of server resources to drones. We propose a heuristic for this problem, and evaluate it though simulation experiments using realistic performance parameters. We show that the mission time can be greatly reduced, by up to 33% (16 min) compared to the default where drones perform all computations onboard, while evenly balancing the benefits of offloading among drones with different missions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信