复量子谐振子模型

A. Arbab
{"title":"复量子谐振子模型","authors":"A. Arbab","doi":"10.1209/0295-5075/98/30008","DOIUrl":null,"url":null,"abstract":"We have formulated a model of a complex (two-dimensional) quantum harmonic oscillator. All dynamical physical variables are expressed in terms of the creation and annihilation operators, viz., . The Hamiltonian of the system is , where ω is the oscillator frequency and is the orbital angular momentum. The oscillator is found to be described by a conserved orbital angular momentum (Lz) besides energy. While the ground-state wave function is real, all excited states are complex and degenerate. The oscillator in these states carry a quantum of charge of . These degenerate wave functions are eigenstates of the orbital angular momentum with eigenvalues nℏ and −nℏ, where h=2πℏ is the Planck's constant and n=1, 2, … . The two wave functions are degenerate with energy En=(n+1)ℏω. The comparison with Landau level reveals that in the presence of the magnetic field, B, where ω is equal to the cyclotron frequency, the current moment is quantized and is proportional to the square root of the magnetic field, i.e., .","PeriodicalId":171520,"journal":{"name":"EPL (Europhysics Letters)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"The complex quantum harmonic oscillator model\",\"authors\":\"A. Arbab\",\"doi\":\"10.1209/0295-5075/98/30008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have formulated a model of a complex (two-dimensional) quantum harmonic oscillator. All dynamical physical variables are expressed in terms of the creation and annihilation operators, viz., . The Hamiltonian of the system is , where ω is the oscillator frequency and is the orbital angular momentum. The oscillator is found to be described by a conserved orbital angular momentum (Lz) besides energy. While the ground-state wave function is real, all excited states are complex and degenerate. The oscillator in these states carry a quantum of charge of . These degenerate wave functions are eigenstates of the orbital angular momentum with eigenvalues nℏ and −nℏ, where h=2πℏ is the Planck's constant and n=1, 2, … . The two wave functions are degenerate with energy En=(n+1)ℏω. The comparison with Landau level reveals that in the presence of the magnetic field, B, where ω is equal to the cyclotron frequency, the current moment is quantized and is proportional to the square root of the magnetic field, i.e., .\",\"PeriodicalId\":171520,\"journal\":{\"name\":\"EPL (Europhysics Letters)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPL (Europhysics Letters)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1209/0295-5075/98/30008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPL (Europhysics Letters)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1209/0295-5075/98/30008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

我们已经建立了一个复杂(二维)量子谐振子的模型。所有动态物理变量都用产生和湮灭算符表示,即。系统的哈密顿量是,其中ω是振子频率是轨道角动量。发现振荡器除了能量之外,还可以用一个守恒的轨道角动量(Lz)来描述。基态波函数是实的,而所有激发态都是复并简并的。处于这些状态的振子携带一个量子的电荷。这些简并波函数是轨道角动量的本征态,本征值为n,和- n,其中h=2π,是普朗克常数,n= 1,2,…。两个波函数简并,能量为En=(n+1)∑ω。与朗道能级的比较表明,在磁场B存在的情况下,电流矩量子化,与磁场的平方根成正比,其中ω等于回旋加速器的频率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The complex quantum harmonic oscillator model
We have formulated a model of a complex (two-dimensional) quantum harmonic oscillator. All dynamical physical variables are expressed in terms of the creation and annihilation operators, viz., . The Hamiltonian of the system is , where ω is the oscillator frequency and is the orbital angular momentum. The oscillator is found to be described by a conserved orbital angular momentum (Lz) besides energy. While the ground-state wave function is real, all excited states are complex and degenerate. The oscillator in these states carry a quantum of charge of . These degenerate wave functions are eigenstates of the orbital angular momentum with eigenvalues nℏ and −nℏ, where h=2πℏ is the Planck's constant and n=1, 2, … . The two wave functions are degenerate with energy En=(n+1)ℏω. The comparison with Landau level reveals that in the presence of the magnetic field, B, where ω is equal to the cyclotron frequency, the current moment is quantized and is proportional to the square root of the magnetic field, i.e., .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信